网络结构

原创 2017年01月03日 14:58:13

菊链式连接

菊链式连接,一种网络结构,也称作总线拓扑(bus topology),在这种结构中所有的节点(node)都连接到并行的电缆(cable)上。
菊花链模式是简化的级联模式,主要的优点是提供集中管理的扩展端口,对于多交换机之间的转发效率并没有提升,主要是因为菊花链模式是采用高速端口和软件来实现的。

简介
菊花链模式使用堆叠电缆将几台交换机以环路的方式组建成一个堆叠组(如图一所示)。但是最后一根从上到下的堆叠电缆只是冗余备份作用,从第一台交换机到最后一台交换机数据包还是要历经中间所有交换机。其效率较低,尤其是在堆叠层数较多时,堆叠端口会成为严重的系统瓶颈,所以建议堆叠层数不要太多。

菊花链是一种信号传输的连接形式,常用的有菊花链总线,菊花链中断等。通俗的讲,信号(总线信号或中断信号)是以串行的方式从一 个设备依次传到下一个设备的,信号有点儿象串联电路中的电流。这样, 和CPU挨得越近,越是优先得到服务的机会,有些异步总线,如VME总线的数据传输和中断的分配就采有这种形式。
菊花链模式的优点
菊花链最大的好处就是可以利用有限的信号传输线连接多台设备,共享同一服务,而且不存在总线竞争和阻塞等问题,因为在某设备把信号传递给下一个设备之前,可以修改这个信号;如果它也需要服务时,就截住这个信号,“私自挪用”了。
菊花链模式的缺点
菊花链的最大缺点是因为是信号串行传输,所以一旦数据链路中的 某设备发生故障的时候,它下面优先级较低的设备就不可能得到服务了,而且靠近CPU的设备由于总是享有优先服务权,有可能造成下面设备的 服务迟迟得不到响应而影响自己的工作效率。在使用菊花链的时候要注意如果某设备不使用该服务时,一定要把该信号短路掉,传给下面的设备;另外就是安排好优先级的次序和最好设置有总线监视器,在迟迟得不到响应时设置超时错,以免因为链路故障而影响整个系统的正常工作。

版权声明:本文为博主原创文章,未经博主允许不得转载。

机器学习-网络结构1

随着深度学习的普及开来, 要面临的问题是:如何设计一个好的网络结构。目前常见的网络结构:AlexNet、ZF、GoogLeNet、VGG、ResNet等等都可谓曾一战成名,它们都具有自身的特性,它们都...
  • Inuchiyo_china
  • Inuchiyo_china
  • 2017年05月02日 09:45
  • 603

网络结构

                                                                 不同层次的网络连接设备1、物理层 :中继器(Repeater)和...
  • sunxinrui1983
  • sunxinrui1983
  • 2011年05月07日 17:11
  • 255

网络结构

网络结构: http://img.blog.csdn.net/20160419113845134” alt=”网络结构” title=”” />http://img.blog.csdn.net/20...
  • frankwtq
  • frankwtq
  • 2016年04月19日 11:39
  • 111

Caffe 网络结构可视化

可以利用python接口实现网络结构的可视化,便于直观理解。注:主要参考《21天实战caffe》1.准备Python环境1.1安装Pythonsudo apt-get update sudo apt-...
  • u012938704
  • u012938704
  • 2016年09月19日 14:57
  • 6099

使用GraphViz画caffe/torch的网络结构图

caffe的Python接口中有一个很不错的功能:画网络结构图,虽然画得并不好看,但可以给人一种直观的感受。 一、准备   首先caffe的python接口当然是必备的了,还没有生成python接...
  • u011534057
  • u011534057
  • 2016年10月19日 15:14
  • 1638

Tensorflow可视化---使用Tensorboard查看网络结构

查看网络结构在打开Tensorboard后,在GRAPH选项下,如图所示:可以看到该网络的网络结构。查看具体节点信息这个网络结构图可以点具体节点上的“+”来显示其详细信息:缩小就可以点击上面的“-”即...
  • lanyuxuan100
  • lanyuxuan100
  • 2017年04月10日 18:24
  • 1450

pytorch使用(三)网络结构可视化

pytorch使用(三)网络结构可视化
  • GYGuo95
  • GYGuo95
  • 2017年12月16日 19:41
  • 816

【深度学习】详细的神经网络架构图

神经网络架构大盘点:从基本原理到衍生关系
  • Taily_Duan
  • Taily_Duan
  • 2017年10月26日 10:12
  • 1030

GoogLeNet网络结构

GoogleNet Inception 1 22 layers deep when counting only layers with parameters (or 27 layers if cou...
  • yuanyuan_csdn_
  • yuanyuan_csdn_
  • 2017年08月11日 16:18
  • 158

LeNet的详细网络结构

针对MNIST的LeNet结构如下图所示:包含2个卷积层,2个max池化层,2个全连接接层和1个relu层与一个softmax层。 下面我来推导一下每层的神经元数目和参数的个数。 ...
  • zhongshaoyy
  • zhongshaoyy
  • 2016年11月14日 21:50
  • 1154
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:网络结构
举报原因:
原因补充:

(最多只允许输入30个字)