【第21期】观点:人工智能到底用 GPU?还是用 FPGA?

混合欧拉图

原创 2015年11月18日 11:35:26

一.混合欧拉图里面有混合欧拉回路和混合欧拉通路

二.什么是混合欧拉图?

    既有单向边又有无向边的欧拉图

三.怎么判断是不是?

    *Step1*把该图的无向边随便定向,计算每个点的入度和出度。如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路。但是如果存在两个点的入度与出度差为奇数,那么可能存在混合欧拉通路。

    解释:1.设点v他的有向边的入度和出度差值为偶数,<1>现在它与偶数个无向边连接。那么这偶数个无向边中会有一部分是作为入边,一部分作为出边,那么他们的个数组合只有:偶偶,奇奇这两种可能,那么偶-偶,奇-奇一定是偶数,所以可能符合欧拉图的条件的。<2>现在它与奇数个无向边连接。那么他们的组合只有:奇偶这一种组合,那么奇-偶一定是奇数,那么他就不符合欧拉图的条件。

              2.设点v他的有向边的入度和出度差值为奇数,<1>现在它与偶数个无向边连接。奇偶情况如上,那么是否满足欧拉图就要看原来的入度出度,那么一定不符合欧拉图条件,如果是偶数就可以通过后期改变无向边的方向来调试。<2>现在它与奇数个无向边连接。那么可以通过无向边来调节,所以有可能符合欧拉图条件。

              综上:随机定向无向边之后,出入度差值为奇数的一定不可能存在欧拉回路或者欧拉通路。

    *Step2*现在要做的就是能否通过更改无向边的方向来将其构成欧拉图,即所有的点的出度等于入度。

    解释:之前保证了所有点的出入度差值一定为偶数,这可以通过改变这个差值的一半来保证所有点的出度和入度相等。网络流解决,虚拟source,sink。

source到所有点(入度<出度)连接一条容量为(出度-入度)/2的边。

所有点(入度>出度)到sink连接一条容量为(入度-出度)/2的边。

对于所有无向边连一条u到v容量为1的边,表示这条边可以变向。

如果source连边和等于总流量,表示可以构成欧拉图。



版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

欧拉图

欧拉图 转自:http://www.cnblogs.com/destinydesigner/archive/2009/09/28/1575674.html 1 定义 欧拉通路(Euler tou...

欧拉图

欧拉图 转自:http://www.cnblogs.com/destinydesigner/archive/2009/09/28/1575674.html 1 定义 欧拉

HDU1116(欧拉图+并查集)

Play on WordsTime Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T...
  • mrlry
  • mrlry
  • 2016-03-08 20:50
  • 129

10129 - Play on Words(*****)欧拉图,并查集

/* 有向欧拉图问题,刘汝佳p112页有详细说明 使用并查集来判断图是否连通,并判断入度和出度情况 题意:将门上的单词最后都拼接在一起, 其中前一个单词的最后一个字母必须和后一个单词的第一个字母相同 */ #include &lt;cstdio&gt; #include &lt;cstring&gt; #include &lt;iostream&gt; #include &lt;string&gt; using namespace std; const int nMax=30; //degree int indgr[nMax],out

POJ - 1637 Sightseeing tour (混合图欧拉路径欧拉图判断)

Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 698...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)