混合欧拉图

原创 2015年11月18日 11:35:26

一.混合欧拉图里面有混合欧拉回路和混合欧拉通路

二.什么是混合欧拉图?

    既有单向边又有无向边的欧拉图

三.怎么判断是不是?

    *Step1*把该图的无向边随便定向,计算每个点的入度和出度。如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路。但是如果存在两个点的入度与出度差为奇数,那么可能存在混合欧拉通路。

    解释:1.设点v他的有向边的入度和出度差值为偶数,<1>现在它与偶数个无向边连接。那么这偶数个无向边中会有一部分是作为入边,一部分作为出边,那么他们的个数组合只有:偶偶,奇奇这两种可能,那么偶-偶,奇-奇一定是偶数,所以可能符合欧拉图的条件的。<2>现在它与奇数个无向边连接。那么他们的组合只有:奇偶这一种组合,那么奇-偶一定是奇数,那么他就不符合欧拉图的条件。

              2.设点v他的有向边的入度和出度差值为奇数,<1>现在它与偶数个无向边连接。奇偶情况如上,那么是否满足欧拉图就要看原来的入度出度,那么一定不符合欧拉图条件,如果是偶数就可以通过后期改变无向边的方向来调试。<2>现在它与奇数个无向边连接。那么可以通过无向边来调节,所以有可能符合欧拉图条件。

              综上:随机定向无向边之后,出入度差值为奇数的一定不可能存在欧拉回路或者欧拉通路。

    *Step2*现在要做的就是能否通过更改无向边的方向来将其构成欧拉图,即所有的点的出度等于入度。

    解释:之前保证了所有点的出入度差值一定为偶数,这可以通过改变这个差值的一半来保证所有点的出度和入度相等。网络流解决,虚拟source,sink。

source到所有点(入度<出度)连接一条容量为(出度-入度)/2的边。

所有点(入度>出度)到sink连接一条容量为(入度-出度)/2的边。

对于所有无向边连一条u到v容量为1的边,表示这条边可以变向。

如果source连边和等于总流量,表示可以构成欧拉图。



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

欧拉图与欧拉路

定义:给定无孤立结点图G,若存在一条路,经过图中海边一次且仅一次,该条路称为欧拉路;若存在一条回路,经过图中海边一次且仅一次,该回路称为欧拉回路。具有欧拉回路的图称作欧拉图。 定理:无向图G...

POJ1637 Sightseeing tour(混合欧拉图的判断)

给出一张混合图(有有向边,也有无向边),判断是否存在欧拉回路。 首先是对图中的无向边随意定一个方向,然后统计每个点的入度(indeg)和出度(outdeg),如果(indeg - outdeg)是奇...

hdu3472(混合图欧拉路径判断)

链接:点击打开链接 题意:有n个单词,有的可以前后颠倒,看是否可以将n个单词首尾相连 代码:#include #include #include #include #include #i...

poj1637(混合图欧拉路 + Dinic)

题目链接:http://poj.org/problem?id=1637          题目大意:判定一个混合图是否是欧拉图。      关于欧拉回路的定义及判定:...
  • kath_y
  • kath_y
  • 2012-08-02 11:30
  • 4921

HDU 3472 HS BDC 混合图的欧拉路径

题目:http://acm.hdu.edu.cn/showproblem.php?pid=3472 题意:给定n个单词,有些单词可以倒置,如果一个单词的尾部和另一个单词的首部一样,则可以把两个单词连...

joj 2727 GRE 混合图欧拉路+网络流

#include #include #include #include using namespace std; const int inf=(1 const int point_num=...

HDOJ3472-混合图欧拉路的求解

我的访问量绝大部分来自于几篇关于欧拉(回)路的博客,唉~ 欧拉路又来了! //将字母看成结点,单词如victoria看成边,倒过来有意义的单词为无向边,否则为有向边,不难想串接单词就是求是否有欧拉...

【混合欧拉】 HDOJ 3472 HS BDC

题意:词语接龙,给出n个词语,一些词语可以反转,问是否存在欧拉路径。 先判定图是否连通,再判断是否存在欧拉路径 欧拉路径的条件:满足欧拉回路或只存在两个点为奇数。 然后建图:令c=(出度-入...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)