POJ 3590 The shuffle Problem 置换+DP

原创 2012年03月24日 00:51:05

题意:对每一个置换T,都存在一个T^k = e。现在让你求一个n元置换,使得它的阶最大,即当T^k = e时,k最大。若同时存在多个这样的T,那么输出其中排序最小的。

题解:由于每一个置换都可以分解成若干个轮换,那么这些轮换的阶的最小公倍数就是该置换的阶。

所以题目可以变成这样:给你一个整数n,求n1+n2+n3```+ni = n。 并且n1,n2,```ni的最小公倍数最大。

1.求最小公倍数并不难,动态规划解决。

2.那么求得最小公倍数之后怎么保证置换排序最小呢?

我们不妨令某个最小公倍数为lcmMax, 那么将lcmMax因式分解之后得到 lcmMax = p1^k1*p2^k2*``pi^ki 

并且p1^k1+p2^k2+···+pi^ki <= n。这个是显然的,因为 lcmMax = p1^k1*p2^k2*``pi^ki <= n1*n2*n3```*ni

n1+n2+n3```+ni = n,所以p1^k1+p2^k2+···+pi^ki <= n。

3.用次用pi^ki个元素构成一个轮换,那么就能保证该置换T的阶最大。

那么你可能会问,剩下的元素怎么办呢?其实全部让它们为一阶轮换就OK了,因为一阶轮换并不影响最后T的阶。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

#define N 110
#define lint __int64
lint dp[N][N], maxLcm[N];
lint factor[N], fnum;
int p[25] ={2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97};

inline lint gcd ( lint a, lint b )
{
    lint c;
    while ( b != 0 )
    {
        c = a % b;
        a = b;
        b = c;
    }
    return a;
}

void split ( int n )
{
    int i, j, k, lcm;
    memset(dp,0,sizeof(dp));
    for ( i = 1; i <= n; i++ )
        dp[i][1] = i;

    for ( i = 2; i <= n; i++ )
        for ( j = 2; j <= i; j++ )
            for ( k = 1; k < i && i-k >= j-1; k++ )
            {
                lcm = dp[i-k][j-1] * k / gcd(dp[i-k][j-1], k);
                if ( lcm > dp[i][j] ) dp[i][j] = lcm;
            }

    for ( i = 1; i <= n; i++ )
    {
        maxLcm[i] = 0;
        for ( j = 1; j <= n; j++ )
            if ( dp[i][j] >= maxLcm[i] )
                maxLcm[i] = dp[i][j];
    }
}

void split ( lint num )
{
    fnum = 0;
    for ( int i = 0; i < 25; i++ )
    {
        if ( num % p[i] ) continue;
        factor[fnum] = 1;
        while ( num % p[i] == 0 )
        {
            factor[fnum] *= p[i];
            num /= p[i];
        }
        fnum++;
    }
}

int main()
{
    int t, n;
    split(100);
    scanf("%d",&t);
    while ( t-- )
    {
        scanf("%d",&n);
        split ( maxLcm[n] );
        sort(factor,factor+fnum);

        int i, j, k, tmp = 0;
        for ( i = 0; i < fnum; i++ )
            tmp += factor[i];

        printf("%I64d",maxLcm[n]);
        for ( i = 1; i <= n - tmp; i++ )
            printf(" %d",i);

        k = n - tmp;
        for ( i = 0; i < fnum; i++ )
        {
            for ( j = 2; j <= factor[i]; j++ )
                printf(" %d",k+j);
            printf(" %d",k+1);
            k += factor[i];
        }
        printf("\n");
    }
    return 0;
}



poj 3590 The shuffle Problem(置换群的幂运算)

Problem Linkpoj 3590 The shuffle Problem 题目很简单,求一个n阶置换T 求T^k = e ,s.t k ,最大,其中k使得T,第一次等于e的值Analysi...
  • Dylan_Frank
  • Dylan_Frank
  • 2016年12月06日 20:00
  • 305

[POJ3590]The shuffle Problem(置换+dp)

题目描述传送门题解这题是BZOJ1025很像,但是这个要求换的次数最多,即lcm最大 那么可以dp 预处理出质数(组)了之后,f(i,j)表示选到第i组,和为j的最大乘积 然后记录一下方案,最后...
  • Clove_unique
  • Clove_unique
  • 2017年02月22日 11:22
  • 503

POJ 3590 The shuffle Problem(置换+DP)

The shuffle Problem Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 217...
  • haut_ykc
  • haut_ykc
  • 2017年10月06日 18:19
  • 97

poj 3590 The shuffle Problem (置换+分组背包)

The shuffle Problem Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 2115   Accept...
  • clover_hxy
  • clover_hxy
  • 2017年03月08日 23:09
  • 164

POJ - 3590 The shuffle Problem

根据置换群的基本知识知道,一个置换P,对于P^k=P的最小k,其实等于P所有循环大小的LCM 所以问题转化为给你一个数n,将它分为几个数,使得和为n,并且LCM最大 很显然和最终的数中的每个素数因...
  • qq_30927651
  • qq_30927651
  • 2017年08月27日 12:47
  • 90

【POJ 3590】The shuffle Problem

由置换群的性质可以知道 T
  • u011332631
  • u011332631
  • 2014年08月11日 21:40
  • 536

置换+DP POJ 3590

题意: 求出一个长度为n的(1~n)的置换,使得置换的长度最大。置换的长度是指使他变成单位置换所需的置换次数。 其实置换的长度等于它的每个循环的长度的最小公倍数,即是将n分解为k个数,使得...
  • u013840081
  • u013840081
  • 2015年06月29日 23:46
  • 520

pku 3590 The shuffle Problem

洗牌问题向来都是用到置换群来做。 此题比较综合。 步骤: 1、用dp[ i ][ j ] = max{dp[ i ][ j ],dp[ i - k ][ j -1]/gcd(dp[ i - k ...
  • withwind93
  • withwind93
  • 2013年03月09日 15:46
  • 277

poj3590 The shuffle Problem(置换+dp)

题目链接 题目大意:一个置换多次操作后就可以回到最初的状态,这个次数称为置换的循环节。求长度为n的序列的最大的循环节x,并且构造循环节为x的字典序最小的方案。 分析: 这道题是bzoj1025的...
  • wu_tongtong
  • wu_tongtong
  • 2018年02月05日 07:17
  • 43

POJ-3087-Shuffle'm Up【暴力】

3087-Shuffle’m Up
  • loy_184548
  • loy_184548
  • 2016年04月01日 11:59
  • 346
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 3590 The shuffle Problem 置换+DP
举报原因:
原因补充:

(最多只允许输入30个字)