POJ 3590 The shuffle Problem 置换+DP

原创 2012年03月24日 00:51:05

题意:对每一个置换T,都存在一个T^k = e。现在让你求一个n元置换,使得它的阶最大,即当T^k = e时,k最大。若同时存在多个这样的T,那么输出其中排序最小的。

题解:由于每一个置换都可以分解成若干个轮换,那么这些轮换的阶的最小公倍数就是该置换的阶。

所以题目可以变成这样:给你一个整数n,求n1+n2+n3```+ni = n。 并且n1,n2,```ni的最小公倍数最大。

1.求最小公倍数并不难,动态规划解决。

2.那么求得最小公倍数之后怎么保证置换排序最小呢?

我们不妨令某个最小公倍数为lcmMax, 那么将lcmMax因式分解之后得到 lcmMax = p1^k1*p2^k2*``pi^ki 

并且p1^k1+p2^k2+···+pi^ki <= n。这个是显然的,因为 lcmMax = p1^k1*p2^k2*``pi^ki <= n1*n2*n3```*ni

n1+n2+n3```+ni = n,所以p1^k1+p2^k2+···+pi^ki <= n。

3.用次用pi^ki个元素构成一个轮换,那么就能保证该置换T的阶最大。

那么你可能会问,剩下的元素怎么办呢?其实全部让它们为一阶轮换就OK了,因为一阶轮换并不影响最后T的阶。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

#define N 110
#define lint __int64
lint dp[N][N], maxLcm[N];
lint factor[N], fnum;
int p[25] ={2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97};

inline lint gcd ( lint a, lint b )
{
    lint c;
    while ( b != 0 )
    {
        c = a % b;
        a = b;
        b = c;
    }
    return a;
}

void split ( int n )
{
    int i, j, k, lcm;
    memset(dp,0,sizeof(dp));
    for ( i = 1; i <= n; i++ )
        dp[i][1] = i;

    for ( i = 2; i <= n; i++ )
        for ( j = 2; j <= i; j++ )
            for ( k = 1; k < i && i-k >= j-1; k++ )
            {
                lcm = dp[i-k][j-1] * k / gcd(dp[i-k][j-1], k);
                if ( lcm > dp[i][j] ) dp[i][j] = lcm;
            }

    for ( i = 1; i <= n; i++ )
    {
        maxLcm[i] = 0;
        for ( j = 1; j <= n; j++ )
            if ( dp[i][j] >= maxLcm[i] )
                maxLcm[i] = dp[i][j];
    }
}

void split ( lint num )
{
    fnum = 0;
    for ( int i = 0; i < 25; i++ )
    {
        if ( num % p[i] ) continue;
        factor[fnum] = 1;
        while ( num % p[i] == 0 )
        {
            factor[fnum] *= p[i];
            num /= p[i];
        }
        fnum++;
    }
}

int main()
{
    int t, n;
    split(100);
    scanf("%d",&t);
    while ( t-- )
    {
        scanf("%d",&n);
        split ( maxLcm[n] );
        sort(factor,factor+fnum);

        int i, j, k, tmp = 0;
        for ( i = 0; i < fnum; i++ )
            tmp += factor[i];

        printf("%I64d",maxLcm[n]);
        for ( i = 1; i <= n - tmp; i++ )
            printf(" %d",i);

        k = n - tmp;
        for ( i = 0; i < fnum; i++ )
        {
            for ( j = 2; j <= factor[i]; j++ )
                printf(" %d",k+j);
            printf(" %d",k+1);
            k += factor[i];
        }
        printf("\n");
    }
    return 0;
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【POJ 3590】The shuffle Problem

由置换群的性质可以知道 T

poj 3590 The shuffle Problem (置换+分组背包)

The shuffle Problem Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 2115   Accept...

[POJ3590]The shuffle Problem(置换+dp)

题目描述传送门题解这题是BZOJ1025很像,但是这个要求换的次数最多,即lcm最大 那么可以dp 预处理出质数(组)了之后,f(i,j)表示选到第i组,和为j的最大乘积 然后记录一下方案,最后...

2011.12.26 POJ1240

题目大意:一直一颗M叉树的先序遍历和后序遍历,求中序遍历的种数。(by the way,如果已知先序和中序,那么后序唯一,如果已知中序和后序,先序也是唯一的) 题目的关键在于“分治”的思想来DP,求...

CF AIM Tech Round 4上紫记

本来CF Round427就已经有1865rating了,当时扬言要一战上紫,结果后面两场CF一场-5,一场+2,直到现在才达成目标,可惜暑假结束前或许不再有div1的round了。 这场cf时常2...

java日志api的使用

JDK 1.4中引入的日志API,能够捕获很多错误信息,比如:设置错误、性能瓶颈、安全破坏、程序或平台小问题等。这些API提供的日志非常适用于各种不同使用者的分析,包括:外出服务工程师,软件开发人员,...

洛谷3816

这题很神奇。 一开始我读了很久才弄明白红黑树的定义。 然后觉得可能是个构造题,想了一个下午,感觉要很多特判。 又觉得可能是DP,状态是f[i][j]表示ii个节点且黑高为jj的红黑树的答案,有一...

[bzoj2863]愤怒的元首

题目大意求n个带编号结点组成的合法DAG个数。递推我们设f[i]表示i个带编号结点组成的合法DAG的个数。 如果删去DAG中所有入度为0的结点,接下来的DAG也是一个合法DAG。 但我们不知道有多...

bzoj2863图上的DP题

题目传送门 题解传送门 这题解最后一步似乎没讲清如何容斥的,或许是在大佬眼里,这过于显然(也可能是容斥的某个常用公式?)然而我并不知道,还是证一下吧。 对于有ii个点的图,记至少有j个入度为0的...

[hdu6105]Gameia

题目大意有一颗n个节点的树,每个节点初始没有颜色。A和B玩游戏,A先手。B有k次小动作,可以在游戏进行的任意时刻使用(可以在A操作前后使用,一次性可以使用多次),每次小动作他会选择切掉一条树边。 两...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)