POJ 2480 Longge's problem 欧拉函数

原创 2012年03月25日 00:27:42
题意: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N.

题解:

公式:f(N)=∑x*φ(N/x),x | N (x是N的约数)
因为在1···N中,gcd(i,N) = x, 的个数的等于φ(N / x)

另外还可以利用函数的积性:

对于正整数n的一个函数 f(n),当中f(1)=1且当a,b互质,f(ab)=f(a)f(b),在数论上就称它为积性函数。若某函数f(n)符合f(1)=1,且就算a,b不互质,f(ab)=f(a)f(b),则称它为完全积性函数。


不妨令M, N互素
f(M) = ∑d1 * φ(M / d1), d1 | M
f(N) = ∑d2 * φ(N / d2), d2 | N

f(MN) = ∑d * φ(MN / d), d | MN
因为M, N互素,则每个d都可以唯一分解为M中的因子d1, 和N中的因子d2
即d = d1 * d2, d1 | M, d2 | N, d1与d2互素
则d * φ(MN / d) = d1 * d2 * φ(M / d1) * φ(N / d2)
f(MN)中的项与f(M) * f(N)中的项一一对应

解法一:47MS
#include<cstdio>
#include<cstring>
using namespace std;

#define MAXN 200000
#define lint __int64
struct Factor { lint b, e; };
Factor f[MAXN]; lint fnum;
lint a[MAXN], p[MAXN], pn;
lint n, ret;

void Prime()
{
    lint i, j; pn = 0;
    memset(a,0,sizeof(a));
    for ( i = 2; i < MAXN; i++ )
    {
        if ( a[i] == 0 ) p[pn++] = i;
        for ( j = 0; j < pn && i*p[j] < MAXN && (p[j]<=a[i] || !a[i]); j++ )
            a[i*p[j]] = p[j];
    }
}

lint Euler ( lint n )
{
    lint ret = n;
    for ( int i = 0; p[i] * p[i] <= n; i++ )
    {
        if ( n % p[i] == 0 )
        {
            ret = ret - ret / p[i];
            while ( n % p[i] == 0 ) n /= p[i];
        }
    }
    if ( n > 1 )
        ret = ret - ret / n;
    return ret;
}

void split ( lint n )
{
    fnum = 0;
    for ( int i = 0; p[i] * p[i] <= n; i++ )
    {
        if ( n % p[i] ) continue;
        f[fnum].b = p[i]; f[fnum].e = 0;
        while ( n % p[i] == 0 )
        {
            f[fnum].e++;
            n /= p[i];
        }
        fnum++;
    }
    if ( n > 1 )
        f[fnum].b = n, f[fnum++].e = 1;

}


void DFS ( lint val, int index ) //求n的每一个约数,然后利用欧拉函数
{
    if ( index == fnum )
    {
        ret += Euler(n/val) * val;   //Euler(n/val)的值表示1-n中gcd(n,i)= val的个数
        return;
    }
    for ( lint i = 0, tmp = 1; i <= f[index].e; i++, tmp *= f[index].b )
        DFS ( val*tmp, index+1 );
}

int main()
{
    Prime();
    while ( scanf("%I64d",&n) != EOF )
    {
        split ( n );
        ret = 0;
        DFS ( 1, 0 );
        printf("%I64d\n",ret);
    }
}


解法二:利用积性16ms
#include<cstdio>
#include<cstring>
using namespace std;

#define MAXN 200000
#define lint __int64
struct Factor { lint b, e, mult; };
Factor f[MAXN]; lint fnum;
lint a[MAXN], p[MAXN], pn;

void Prime()
{
    lint i, j; pn = 0;
    memset(a,0,sizeof(a));
    for ( i = 2; i < MAXN; i++ )
    {
        if ( a[i] == 0 ) p[pn++] = i;
        for ( j = 0; j < pn && i*p[j] < MAXN && (p[j]<=a[i] || !a[i]); j++ )
            a[i*p[j]] = p[j];
    }
}

lint Euler ( lint n )
{
    lint ret = n;
    for ( int i = 0; p[i] * p[i] <= n; i++ )
    {
        if ( n % p[i] == 0 )
        {
            ret = ret - ret / p[i];
            while ( n % p[i] == 0 ) n /= p[i];
        }
    }
    if ( n > 1 )
        ret = ret - ret / n;
    return ret;
}

void split ( lint n )
{
    fnum = 0;
    for ( int i = 0; p[i] * p[i] <= n; i++ )
    {
        if ( n % p[i] ) continue;
        f[fnum].b = p[i]; f[fnum].e = 0;
        f[fnum].mult = 1;
        while ( n % p[i] == 0 )
        {
            f[fnum].e++;
            f[fnum].mult *= p[i];
            n /= p[i];
        }
        fnum++;
    }
    if ( n > 1 )
        f[fnum].b = f[fnum].mult = n, f[fnum++].e = 1;

}

int main()
{
    Prime(); lint n;
    while ( scanf("%I64d",&n) != EOF )
    {
        split ( n );
        lint ret = 1, tmp, sum;
        for ( int i = 0; i < fnum; i++ )
        {
            tmp = 1, sum = Euler(f[i].mult); //所有与f[i].mult互素的数先加起来
            for ( int j = 1; j <= f[i].e; j++ )
            {
                tmp *= f[i].b;
                sum += Euler(f[i].mult/tmp) * tmp;
            }
            ret *= sum;
        }
        printf("%I64d\n",ret);
    }
}


poj2480(欧拉函数,必须回顾的题)

欧拉函数的思想!!!! 刚开始写跪了,一直wa,太晚了,就只好先这样了 #include #include #include #include #define ll long long usin...

poj 2480

设函数g(n) = gcd(i,n) (11时 n=p1^a1*p2^a2*...*ps^as,那么f(n)是积性函数的充要条件是f(1)=1,及f(n) = f(p1^a1)*f(p2^a2)*.....

POJ 2480 Longge's problem 解题报告(欧拉函数 + 积性函数)

Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6914 ...
  • kbdwo
  • kbdwo
  • 2014年04月27日 08:58
  • 496

poj 2480 Longge's problem(积性函数 & 欧拉函数)

http://poj.org/problem?id=2480 大意:求解 ∑gcd(i, N) 1 对于最大公约数,它有这样的性质,gcd(n,m1*m2)=gcd(nm1)*gcd(n,m2)  ...

POJ2480 Longge's problem 欧拉函数应用

题目链接:POJ2480 题目大意:∑gcd(i, N) 1 代码,思路借鉴:大佬的思路 在数论中的积性函数:对于正整数n的一个函数 f(n),当中f(1)=1且当a,b互质,f(ab)...

POJ 2480 Longge's problem (欧拉函数)

Longge’s problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8107 Accepted...

POJ 2480 Longge's problem (欧拉函数+乘性函数)

Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7343   Accepted:...

poj 2480 Longge's problem(欧拉函数或积性函数)

poj 2480 Longge's problem

POJ 2048 Longge's problem (欧拉函数 积性函数)

POJ 2048 Longge's problem (欧拉函数 积性函数)

POJ 2480 Longge's Problem

积性函数的性质,同时,PHI(n/d)为1到n中与n的公约数为d的个数
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 2480 Longge's problem 欧拉函数
举报原因:
原因补充:

(最多只允许输入30个字)