关闭

POJ 2240 && HDU 1217 Arbitrage(Floyd)

188人阅读 评论(0) 收藏 举报
分类:

Description
给定一些货币之间的单向汇率,问一笔钱能否经过若干次对换而增值
Input
多组用例,每组用例第一行为货币种数n,之后n行为货币类型,第n+2行为兑换规则数m,之后m行为货币之间的单向汇率,每组用例后跟一空行,以n=0结束输入
Output
对于每组用例,若是一笔钱能够经过若干次兑换后增值则输出Yes,否则输出No
Sample Input
3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar

3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar

0
Sample Output
Case 1: Yes
Case 2: No
Solution
根据输入建立有向图,不能使用dijaskra,因为增值的方法不一定是优先选择最小的路径,并不是贪心所能解决的,所以要用以动态规划为基本思想的floyd来做,建完图后跑一边floyd判断是否存在g[i][i]>1的情况出现即可
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 111
int n,m;
double a[maxn][maxn];
char s[maxn][maxn];
int find(char *c)
{
    for(int i=1;i<=n;i++)
        if(strcmp(s[i],c)==0)return i;
}
int main()
{
    int res=1;
    while(~scanf("%d",&n),n)
    {
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                a[i][j]=i==j?1:0;
        for(int i=1;i<=n;i++)scanf("%s",s[i]);
        scanf("%d",&m);
        char x[maxn],y[maxn];
        double temp;
        while(m--)
        {
            scanf("%s%lf%s",x,&temp,y);
            int u=find(x),v=find(y);
            a[u][v]=temp;
        }
        for(int k=1;k<=n;k++)
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                    a[i][j]=max(a[i][j],a[i][k]*a[k][j]);
        int flag=0;
        for(int i=1;i<=n;i++)
            if(a[i][i]>1.0)
            {
                flag=1;
                break;
            } 
        printf("Case %d: %s\n",res++,flag?"Yes":"No");
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:306077次
    • 积分:18450
    • 等级:
    • 排名:第492名
    • 原创:1603篇
    • 转载:0篇
    • 译文:0篇
    • 评论:57条
    最新评论