关闭

POJ 2255 Tree Recovery(递归)

240人阅读 评论(0) 收藏 举报
分类:

Description
输入两组数据,分别是前序遍历序列和中序遍历序列,你需要编写程序通过这两组数据求出该树的后序遍历序列
Input
多组用例,每组用例占一行,包括两个串分别表示前序遍历序列和中序遍历序列,以文件尾结束输入
Output
对于每组用例,输出其后序遍历序列
Sample Input
DBACEGF ABCDEFG
BCAD CBAD
Sample Output
ACBFGED
CDAB
Solution
由于遍历都是递归定义的,所以不难得到以下结论:树的任意子树的遍历结点序列一定是该树的遍历结点序列的一个连续子序列。有了这个结论后,我们的任务就是确定子树遍历结点序列的起点和终点,而这个可以根据前序遍历序列和中序遍历序列得到。例如,前序遍历序列的第一个结点是根,根结点会把i中序遍历序列分为2部分(可能某部分为空),左边的就是左子树的中序遍历结点序列,右边的就是右子树的中序遍历结点序列,这样也就确定了左子树和右子树的结点数目,根据左右子树结点数目,就可得到左右子树的先序遍历结点序列,从而问题就递归了:已知左右子树的先序遍历结点序列和中序遍历结点序列,求后序遍历结点序列,递归求解即可。递归边界是叶子结点
Code

#include <stdio.h>
#include <string.h>
#define N 27
char pre[N],in[N];//pre表示前序遍历序列,in表示中序遍历序列 
int id[N];
void print(int a,int b,int c,int d)//a,b,c,d分别表示前序和中序遍历序列的起点和终点 
{
    int i=id[pre[a]-'A'];//根节点 
    int j=i-c;//中序遍历序列的左子树 
    int k=d-i;//中序遍历序列的右子树 
    if(j)   print(a+1,a+j,c,i-1);//左子树非空则递归左子树 
    if(k)   print(a+j+1,b,i+1,d);//右子树非空则递归右子树 
    printf("%c",pre[a]);
}
int main()
{
    while(~scanf("%s%s",pre,in))
    {
        for(int i=0;in[i];i++)  
            id[in[i]-'A']=i; 
        int len=strlen(in);
        print(0,len-1,0,len-1);
        puts("");
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:361613次
    • 积分:19706
    • 等级:
    • 排名:第449名
    • 原创:1677篇
    • 转载:0篇
    • 译文:0篇
    • 评论:61条
    最新评论