51nod 分解

原创 2016年08月29日 00:27:58

分解
UsedToBe (命题人)
基准时间限制:0.5 秒 空间限制:131072 KB 分值: 80
问(1+sqrt(2)) ^n 能否分解成 sqrt(m) +sqrt(m-1)的形式
如果可以 输出 m%1e9+7 否则 输出no

Input
一行,一个数n。(n<=10^18)
Output
一行,如果不存在m输出no,否则输出m%1e9+7
Input示例
2
Output示例
9

这道题需要证明(1+sqrt(2)) ^n 存在m恒有 sqrt(m) +sqrt(m-1) 的形式 ,具体证明在这里就不说了。
(1+sqrt(2))^n 可以化成 a + b*sqrt(2)的形式。
拓展出来有
a b n
1 1 1
3 2 2
7 5 3
17 12 4
…..
等, 这里我们就可以发现规律了,
从n=1开始,就有 an = an-1 * 2 + bn-1
bn = an-1 + bn-1
因为n的范围在10^18,O(n)的复杂度。
所以我们这里就可以构造矩阵,然后快速幂。
| 1 2 | * | an-1 | = | an |
| 1 1 | | bn-1 | | bn |
这样子就可以在O(log2n)的复杂度快速算出答案了。
得出an, bn还不够。
这样我们还要可以继续找规律,
你会发现n在奇偶的情况下有规律:
偶数 : m = a^2
奇数: m = 2*b^2
我们就可以做完这道题了。

#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<ctime>
#include<string>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#include<set>
#include<map>
#include<cstdio>
#include<limits.h>
#define MOD 1000000007
#define fir first
#define sec second
#define fin freopen("/home/ostreambaba/文档/input.txt", "r", stdin)
#define fout freopen("/home/ostreambaba/文档/output.txt", "w", stdout)
#define mes(x, m) memset(x, m, sizeof(x))
#define Pii pair<int, int>
#define Pll pair<ll, ll>
#define INF 1e9+7
#define Pi 4.0*atan(1.0)

#define lowbit(x) (x&-x)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

typedef long long ll;
typedef unsigned long long ull;
const double eps = 1e-7;
const int maxn = 101;
using namespace std;
//#define time
struct Matrix
{
    ull mat[2][2];
    void output(){
        for(int i = 0; i < 2; ++i){
            for(int j = 0; j < 2; ++j){
                cout << mat[i][j] << " ";
            }
            cout << endl;
        }
    }
    void clear(){
        mes(mat, 0);
    }
    void init(){
        mes(mat, 0);
        for(int i = 0; i < 2; ++i){
            mat[i][i] = 1;
        }
    }
    Matrix operator *(const Matrix &b) const{
        Matrix tmp;
        tmp.clear();
        for(int i = 0; i < 2; ++i){
            for(int j = 0; j < 2; ++j){
                for(int k = 0; k < 2; ++k){
                    tmp.mat[i][j] = (tmp.mat[i][j] + mat[i][k]*b.mat[k][j])%MOD;
                }
            }
        }
        return tmp;
    }
};

Matrix fast_mod(ull n, Matrix &base){
    Matrix res;
    res.init();
    while(n){
        if(n&1){
            res = res*base;
        }
        base = base*base;
        n >>= 1;
    }
    return res;
}

int main()
{
    ull n, m;
    cin >> n;
    Matrix base = {
        1, 2,
        1, 1
    };
    base = fast_mod(n-1, base);
    Matrix p = {
        1, 0,
        1, 0
    };
    p = base*p;
    if(n&1){
        m = p.mat[1][0]*p.mat[1][0]*2%MOD;
    }
    else{
        m = p.mat[0][0]*p.mat[0][0]%MOD;
    }
    cout << m << endl;
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

51Nod-算法马拉松17(告别奥运)-B-分解

ACM模版描述题解这道题,着实坑了我半个小时,题目有问题,不够严谨,m%1e9+7应该改为m%(1e9+7),因为一开始没有看出这个问题,所以我愣是看不懂样例,反应过来后也就明了了。这里问,能否分解,...
  • f_zyj
  • f_zyj
  • 2016-08-27 19:45
  • 344

51NOD 1537 分解

1537 分解 基准时间限制:0.5 秒 空间限制:131072 KB 分值: 80 难度:5级算法题问(1+sqrt(2)) ^n 能否分解成 sqrt(m) +sqrt(m-1)的形式 如...

51 NOD 1189 阶乘分数(素因子分解+推公式+求逆元)

传送门 1189 阶乘分数 题目来源: Spoj 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 1/N! = 1/X + 1/Y,给出N,求满足条件的整...

[51Nod 1048] 整数分解为2的幂 V2

Description 任何正整数都能分解成2的幂,给定整数N,求N的此类划分方法的数量! 比如N = 7时,共有6种划分方法。 7=1+1+1+1+1+1+1 =1+1...

51nod 算法马拉松3 A:序列分解

序列分解 System Message (命题人) 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 小刀和大刀是双胞胎兄弟。今天他们玩一个有意思的游戏。 大...

51NOD 1537 分解(矩阵快速幂)——算法马拉松17(告别奥运)

传送门问 (1+2√)n(1+\sqrt 2) ^n 能否分解成 m−−√+(√m−1)\sqrt m +\sqrt(m-1)的形式 如果可以 输出 m MOD (109+7)m\ MOD\ (1...

51nod-序列分解(dfs)

1400 序列分解 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 小刀和大刀是双胞胎兄弟。...

51nod 1400 序列分解【Dfs+剪枝】好题~

1400 序列分解 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 小刀和大刀是双胞胎兄弟。今天他们玩一个有意思的游戏。 大...

51nod - 1573 分解 - 矩阵快速幂

51nod 算法马拉松17(告别奥运)B 分解 51nod 算法马拉松17(告别奥运)B 分解 题意 :给出一个nn,问(1+2√)n(1+\sqrt 2)^n 能否拆成m−−√+(√m−1)\sq...

51Nod-1125-交换机器的最小代价

ACM模版描述题解看了这道题,标记着贪心算法,但是吭哧吭哧了好久也没有想到如何贪心才是最贪心的策略,每次总是感觉有纰漏,无法想到最全的策略。找了找大神的题解,茅厕顿开,真是自己太年轻了。找到一篇 sa...
  • f_zyj
  • f_zyj
  • 2017-03-17 00:54
  • 468
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)