关闭

poj 1811 Prime Test(素数判断)

标签: 素数判断
588人阅读 评论(0) 收藏 举报
分类:
Prime Test
Time Limit: 6000MS   Memory Limit: 65536K
Total Submissions: 27513   Accepted: 6874
Case Time Limit: 4000MS

Description

Given a big integer number, you are required to find out whether it's a prime number.

Input

The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 254).

Output

For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.

Sample Input

2
5
10

Sample Output

Prime
2



题意:给出一个整数N(2 <= N < 254),判断N是否为素数。
思路:用到miller_rabin的素数判断和pollard_rho的整数分解,详见《算法导论》第31章第31.8至31.9节
以下是网上找的代码:

#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <queue>
#include <ctime>

#define ll __int64

using namespace std;

const ll INF = pow(2.0, 60);
const int TIME = 12;
ll minf;
ll gcd(ll a, ll b)
{
    return b == 0 ? a : gcd(b, a % b);
}
ll mod_mult(ll a, ll b, ll n)      //计算(a*b)%n
{
    ll ret = 0;
    a %= n;
    while(b)
    {
        if(b & 1)
        {
            ret += a;
            if(ret >= n) ret -= n;
        }
        a <<= 1;
        if(a >= n) a -= n;
        b >>= 1;
    }
    return ret;
}
ll mod_exp(ll a, ll b, ll n)         //计算(a^b)%n
{
    ll r = 1;
    a %= n;
    while(b)
    {
        if(b & 1)
        r = mod_mult(r, a, n);
        a = mod_mult(a, a, n);
        b >>= 1;
    }
    return r;
}
bool Witess(ll a, ll n)        //以a为基对n进行Miller测试并实现二次探测
{
    ll m, x, y;
    int i, j = 0;
    m = n - 1;
    while(m % 2 == 0)
    {
        m >>= 1;
        j++;
    }
    x = mod_exp(a, m, n);
    for(i = 1; i <= j; i++)
    {
        y = mod_exp(x, 2, n);
        if(y == 1 && x != 1 && x != n - 1)         //二次探测
        return true;
        x = y;
    }
    if(y != 1) return true;
    return false;
}
bool miller_rabin(int times,ll n)
{
    ll a;
    if(n == 1) return false;
    if(n == 2) return true;
    if(n % 2 == 0) return false;
    srand(time(NULL));
    for(int i = 1; i <= times; i++)
    {
        a = rand() % (n - 1) + 1;
        if(Witess(a, n)) return false;
    }
    return true;
}
ll pollard_rho(ll n, int c)
{
    ll i = 1, k = 2, x, y, d;
    srand(time(NULL));
    x = rand() % n;
    y = x;
    while(true)
    {
        i++;
        x = (mod_mult(x, x, n) + c) % n;
        d = gcd(y - x, n);
        if(d > 1 && d < n) return d;
        if(y == x) return n;
        if(i == k)
        {
            y = x;
            k <<= 1;
        }
    }
}
void get_small(ll n, int c)
{
    ll m;
    if(n == 1) return;
    if(miller_rabin(TIME, n))
    {
        if(n < minf) minf = n;
        return;
    }
    m = n;
    while(m == n) m = pollard_rho(n, c--);
    get_small(m, c);
    get_small(n / m, c);
}
int main()
{
    int t;
    ll n;
    scanf("%d", &t);
    while(t--)
    {
        minf = INF;
        scanf("%I64d", &n);
        if(miller_rabin(TIME, n)) printf("Prime\n");
        else
        {
            get_small(n, 240);
            printf("%I64d\n", minf);
        }
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:244567次
    • 积分:6325
    • 等级:
    • 排名:第4090名
    • 原创:397篇
    • 转载:11篇
    • 译文:0篇
    • 评论:11条
    最新评论