poj 1811 Prime Test(素数判断)

原创 2013年12月03日 17:21:06
Prime Test
Time Limit: 6000MS   Memory Limit: 65536K
Total Submissions: 27513   Accepted: 6874
Case Time Limit: 4000MS

Description

Given a big integer number, you are required to find out whether it's a prime number.

Input

The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 254).

Output

For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.

Sample Input

2
5
10

Sample Output

Prime
2



题意:给出一个整数N(2 <= N < 254),判断N是否为素数。
思路:用到miller_rabin的素数判断和pollard_rho的整数分解,详见《算法导论》第31章第31.8至31.9节
以下是网上找的代码:

#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <queue>
#include <ctime>

#define ll __int64

using namespace std;

const ll INF = pow(2.0, 60);
const int TIME = 12;
ll minf;
ll gcd(ll a, ll b)
{
    return b == 0 ? a : gcd(b, a % b);
}
ll mod_mult(ll a, ll b, ll n)      //计算(a*b)%n
{
    ll ret = 0;
    a %= n;
    while(b)
    {
        if(b & 1)
        {
            ret += a;
            if(ret >= n) ret -= n;
        }
        a <<= 1;
        if(a >= n) a -= n;
        b >>= 1;
    }
    return ret;
}
ll mod_exp(ll a, ll b, ll n)         //计算(a^b)%n
{
    ll r = 1;
    a %= n;
    while(b)
    {
        if(b & 1)
        r = mod_mult(r, a, n);
        a = mod_mult(a, a, n);
        b >>= 1;
    }
    return r;
}
bool Witess(ll a, ll n)        //以a为基对n进行Miller测试并实现二次探测
{
    ll m, x, y;
    int i, j = 0;
    m = n - 1;
    while(m % 2 == 0)
    {
        m >>= 1;
        j++;
    }
    x = mod_exp(a, m, n);
    for(i = 1; i <= j; i++)
    {
        y = mod_exp(x, 2, n);
        if(y == 1 && x != 1 && x != n - 1)         //二次探测
        return true;
        x = y;
    }
    if(y != 1) return true;
    return false;
}
bool miller_rabin(int times,ll n)
{
    ll a;
    if(n == 1) return false;
    if(n == 2) return true;
    if(n % 2 == 0) return false;
    srand(time(NULL));
    for(int i = 1; i <= times; i++)
    {
        a = rand() % (n - 1) + 1;
        if(Witess(a, n)) return false;
    }
    return true;
}
ll pollard_rho(ll n, int c)
{
    ll i = 1, k = 2, x, y, d;
    srand(time(NULL));
    x = rand() % n;
    y = x;
    while(true)
    {
        i++;
        x = (mod_mult(x, x, n) + c) % n;
        d = gcd(y - x, n);
        if(d > 1 && d < n) return d;
        if(y == x) return n;
        if(i == k)
        {
            y = x;
            k <<= 1;
        }
    }
}
void get_small(ll n, int c)
{
    ll m;
    if(n == 1) return;
    if(miller_rabin(TIME, n))
    {
        if(n < minf) minf = n;
        return;
    }
    m = n;
    while(m == n) m = pollard_rho(n, c--);
    get_small(m, c);
    get_small(n / m, c);
}
int main()
{
    int t;
    ll n;
    scanf("%d", &t);
    while(t--)
    {
        minf = INF;
        scanf("%I64d", &n);
        if(miller_rabin(TIME, n)) printf("Prime\n");
        else
        {
            get_small(n, 240);
            printf("%I64d\n", minf);
        }
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

Prime Numbers(简单)

Description Given an integer number, you are required to find out whether it's a prime number. In...
  • u011292087
  • u011292087
  • 2014年01月09日 16:10
  • 674

【数论】poj1811Prime Test

题目链接题目描述:对一个n(2
  • cqbztsy
  • cqbztsy
  • 2015年08月01日 21:14
  • 295

POJ 1811 Prime Test【素数判定与大数分解】

题目来戳呀DescriptionGiven a big integer number, you are required to find out whether it’s a prime number...
  • ppppublic
  • ppppublic
  • 2017年03月29日 16:45
  • 119

POJ-1811-Prime Test

ACM模版题目链接POJ 1811 Prime Test题解随机素数测试和大数分解两个核心算法。随机素数测试算法需要进行8~10次测试的样子,可以尽可能的保证结果的正确性。代码#include usi...
  • f_zyj
  • f_zyj
  • 2016年07月02日 22:19
  • 288

POJ 1811 Prime Test

Prime TestTime Limit: 6000MS Memory Limit: 65536KTotal Submissions: 15434 Accepted: 2909Case Time Li...
  • bobten2008
  • bobten2008
  • 2009年11月27日 21:21
  • 2105

POJ, 1811 Prime Test

题意:首先输入一个T,代表T组数据,然后输入T个n,判断n是不是素数,如果是素数,那就输出Prime,如果不是素数,就输出n的最小素数因子,n的范围是2到2^54。 思路:n的范围十分大,差不多1....
  • s1054436218
  • s1054436218
  • 2017年03月29日 09:19
  • 92

POJ 1811 Prime Test

链接: http://poj.org/problem?id=1811判断一个数是否为素数,如果不是的话,输出最小的素因子  范围 n 从大小上来看,普通方法一定搞不定!故只能参考大牛blog 及代码 ...
  • surfacedust
  • surfacedust
  • 2011年07月26日 20:14
  • 578

poj 1811 Prime Test

http://162.105.81.212/JudgeOnline/problem?id=1811 //对于一个数(2
  • SMCwwh
  • SMCwwh
  • 2010年08月26日 22:56
  • 1235

poj1811 Prime Test,随机素数测试

Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 24514   Ac...
  • yew1eb
  • yew1eb
  • 2014年11月05日 21:56
  • 1959

Prime Test POJ - 1811 miller素数判断&pollar_rho大数分解

题目链接Given a big integer number, you are required to find out whether it's a prime number. InputThe ...
  • cccruel
  • cccruel
  • 2017年08月25日 11:09
  • 206
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1811 Prime Test(素数判断)
举报原因:
原因补充:

(最多只允许输入30个字)