[UOJ #21]缩进优化

题目大意找到合适的x来最小化 ∑ni=1⌊aix⌋+ai%x\sum_{i=1}^n\lfloor\frac{a_i}{x}\rfloor+a_i\% x解法把模给拆了 ∑ni=1ai+∑ni=1⌊aix⌋∗(1−x)\sum_{i=1}^na_i+\sum_{i=1}^n\lfloor\frac{a_i}{x}\rfloor*(1-x) 维护桶的前缀和,枚举x和⌊aix⌋\lfloor\fr...
阅读(78) 评论(0)

完全背包问题

题目大意做法定义有数量限制的叫大件,其余是小件。 考虑最小的那个体积v1。 如果连v1都是大件,DP容易解决。 不然的话,考虑在模v1意义下进行,最终要凑出的S必定是S%v1。 问题在于,凑出S%v1不一定能凑出S。 实际上,如果能凑出x,x+v1也能凑出。 因此考虑求出每个模意义下能凑出的最小数便可以每次判定能否凑出。 不过还有大件限制困扰我们。我们设f[i,j]表示用了i个大件,凑...
阅读(99) 评论(0)

running

题目描述小胡同学是个热爱运动的好孩子。 每天晚上,小胡都会去操场上跑步,学校的操场可以看成一个由n 个格子排成的一个环形,格子按照顺时针顺序从0 到n �� 1 标号。 小胡观察到有m 个同学在跑步,最开始每个同学都在起点(即0 号格子),每个同学都有个步长ai,每跑一步,每个同学都会往顺时针方向前进ai 个格子。由于跑道是环形的,如果 一个同学站在n �� 1 这个格...
阅读(72) 评论(0)

J友

题目大意你初始在(0,0)。 每个单位时间可以走向任意一个四连通格子。 问时刻n恰好在(x,y)的方案数。 答案模m。组合数取模显然,我们枚举向上走了多少步,就能计算出应该向左/右/下走多少步。 假设分别为p1,p2,p3,p4,那么相当于一个全排列。 由于对组合数取模比较熟悉,所以把全排列公式变成组合数相乘。 Cp1p1+p2+p3+p4∗Cp2p2+p3+p4∗Cp3p3+p4C_{...
阅读(163) 评论(0)

Pow

题目描述定义a^b为a的b次方,并且^是满足右结合的,即a^b^c^d=a^(b^(c^d))。例如,2^3^2=2^(3^2)=2^9=512。 现在给定n个数a1,a2,…,an 求a1^a2^…^an对p取模的值。一个东西我们只需要考虑如何计算ax%pa^x\% p 那么就可以解决这道题。 设d=(a,p),a′=a/d,p′=p/d,ans=ax%pd=(a,p),a'=a/d,p'...
阅读(159) 评论(0)

[bzoj3202][SDOI2013]项链

题目大意现在有一个由n个珠子组成的项链,满足相邻两个珠子不同。 每个珠子可以看做三个数组成的序列,需要满足三个数最大公约数为1且每个数不大于m,两个珠子如果经过旋转或翻转完全一致则认为其相同。 现在求不同项链数,两个项链如果经过旋转完全一致则认为其相同。 答案模10^9+7. n<=10^14,m<=10^7题解太麻烦了看Crazy的吧 Crazy的项链题解 程序我写的比较优美所以贴我的...
阅读(550) 评论(0)

[bzoj2956]模积和

题目大意求∑ni=1∑mj=1,j!=i(nmodi)∗(mmodj)\sum_{i=1}^n\sum_{j=1,j!=i}^m(n\mod i)*(m \mod j)思路太麻烦了。 提供一个思路,nmodi=n−⌊ni⌋∗in\mod i=n-\lfloor\frac{n}{i}\rfloor*i 然后把原式中所有的都进行转化。 注意到有i!=j,先不理会它,然后最后减去。 学过莫比乌斯反...
阅读(298) 评论(0)

[GDKOI2016]小学生数学题

题目大意求 ∑i=1ni−1\sum_{i=1}^ni^{-1} 对pkp^k取模 p<=100000,n*p^k<=10^18分成两组我们设f(n,k)表示∑ni=1i−1对pk取模的结果f(n,k)表示\sum_{i=1}^ni^{-1}对p^k取模的结果 我们假设n对p取模为0,不是的话把多余部分暴力然后把n变为模p为0。 然后n以内的可以分成两类:是p的倍数和不是p的倍数。 设第...
阅读(198) 评论(0)

[bzoj3129][SDOI2013]方程

题目大意现有N个未知数X1..N,已知这N个未知数之和为M。 现有n1个不等式,第i个不等式为Xi=Gi。 求方程的正整数解个数,结果模P。 若P=p1c1∗p2c2∗...∗ptopctopP=p1^{c1}*p2^{c2}*...*ptop^{ctop} 则最大的pici<=105pi^{ci}<=10^5 N,M<=10^9,...
阅读(542) 评论(0)

reward

题目大意球的个数在0..M中,将球分到N个盒子里,每个盒子可以没有,问方案数,答案模P。 N,M,P<=10^9,将P分成互不互质的数的乘积,且这些数均可表示为质数的幂,最大的数<=10^5。隔板问题我们可以看作将M个球放入N+1个盒子里,由于每个盒子可以没有,所以方案数为CNN+MC_{N+M}^N 考虑该如何进行组合数取模呢?中国剩余定理将P分解成互不互质的数的乘积,且这些数均可表示为质数的...
阅读(485) 评论(0)
    个人资料
    • 访问:163736次
    • 积分:8221
    • 等级:
    • 排名:第2254名
    • 原创:640篇
    • 转载:5篇
    • 译文:0篇
    • 评论:159条
    公告
    幻梦终醒,本无不散之宴,却不悔付此华年。
    最新评论
    文章分类