关闭

[bzoj4173]数学

题目大意懒得写推导[n mod k+m mod k≥k]=[n−⌊nk⌋k+m−⌊mk⌋k>=k][n\ mod\ k+m\ mod\ k\geq k]=[n-\lfloor\frac{n}{k}\rfloor k+m-\lfloor\frac{m}{k}\rfloor k>=k] 于是等价于 [⌊n+mk⌋−⌊nk⌋−⌊mk⌋>=1][\lfloor\frac{n+m}{k}\rfloor-\...
阅读(76) 评论(0)

[bzoj4815][CQOI2017]小Q的表格

题目描述小Q是个程序员。 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理。每当小Q不知道如何解决 时,就只好向你求助。为了完成任务,小Q需要列一个表格,表格有无穷多行,无穷多列,行和列都从1开始标号。 为了完成任务,表格里面每个格子都填了一个整数,为了方便描述,小Q把第a行第b列的整数记为f(a,b),为了完成 任务,这个表格要满足一些条件:(1)对任意的正...
阅读(155) 评论(0)

蛋糕

题目大意CJY很喜欢吃蛋糕,于是YJC弄到了一块蛋糕,现在YJC决定和CJY分享蛋糕。 这块蛋糕上有n^2颗葡萄干,排成了一个n*n的点阵,每颗葡萄干互不相同且被编号为1~n^2。YJC决定沿着一条直线把蛋糕切成两份。YJC和CJY都很喜欢吃葡萄干,所以切出的两份蛋糕必须都包含至少一颗葡萄干。同时他们都不希望吃到不完整的葡萄干,所以切的时候不能经过任意一颗葡萄干。CJY喜欢1号葡萄干,所以他选择了...
阅读(141) 评论(0)

[SDOI2008]沙拉公主的困惑

题目大意求n!中与m!互质的数的个数。显然的结论就是求n!∗Πk|m!k−1kn!*\Pi_{k|m!} \frac{k-1}{k} 至于为什么就不说了,太过显然。 然后预处理阶乘,后面那个与m有关可以预处理,为了不超时还要线性求逆。#include #include #define fo(i,a,b) for(i=a;i<=b;i++) using na...
阅读(180) 评论(0)

[bzoj2818]gcd

题目大意求∑i=1n∑j=1n(i,j)是质数\sum_{i=1}^n\sum_{j=1}^n(i,j)是质数有趣方法很容易想到莫比乌斯反演啦,但本弱智打了另外的弱智方法。 我们知道对于j<ij<i,若有(i,j)=1,那么就有(i*k,j*k)=k。 也就是说只要k是质数就可以算进答案。 于是线性筛,筛出欧拉函数,并处理前缀质数个数。 那么i对于答案的贡献是phi(i)∗sum(n/i)p...
阅读(334) 评论(2)

[bzoj3202][SDOI2013]项链

题目大意现在有一个由n个珠子组成的项链,满足相邻两个珠子不同。 每个珠子可以看做三个数组成的序列,需要满足三个数最大公约数为1且每个数不大于m,两个珠子如果经过旋转或翻转完全一致则认为其相同。 现在求不同项链数,两个项链如果经过旋转完全一致则认为其相同。 答案模10^9+7. n<=10^14,m<=10^7题解太麻烦了看Crazy的吧 Crazy的项链题解 程序我写的比较优美所以贴我的...
阅读(709) 评论(0)

五校联考六T1

题目大意求ϕ(ab)\phi(a^b)。a,b<=10^12。水题一道我们可以知道aba^b只含有a的质因子。 因此我们根据欧拉函数的三条性质可得 ϕ(ab)=ab∗p1−1p1∗...∗pm−1pm\phi(a^b)=a^b*\frac{p1-1}{p1}*...*\frac{pm-1}{pm} 其中p1~pm都为a的质因子且不重不漏。 那么对a分解质因数即可。...
阅读(288) 评论(0)

数学之神

题目大意求在n(n<=10^7)以内的正整数中与其互质的个数以及这些数的和。phi第一问相当于求phi(n),那第二问呢? 注意到如果gcd(n,a)=1,那么gcd(n,n-a)=1,这两个数都与n互质且和为n。 那么只要n不为2,答案就为phi(n)*n/2。 巧合的是n为2也符合这个式子。优化筛法我们发现直接筛phi很慢,过不了。 我是蒟蒻不会线性筛,但在考场上想到了这样一个方法通过了...
阅读(327) 评论(0)
    个人资料
    • 访问:211295次
    • 积分:9145
    • 等级:
    • 排名:第2014名
    • 原创:689篇
    • 转载:4篇
    • 译文:0篇
    • 评论:181条
    最新评论
    文章分类