关闭

[GDKOI2016]小学生数学题

题目大意求 ∑i=1ni−1\sum_{i=1}^ni^{-1} 对pkp^k取模 p<=100000,n*p^k<=10^18分成两组我们设f(n,k)表示∑ni=1i−1对pk取模的结果f(n,k)表示\sum_{i=1}^ni^{-1}对p^k取模的结果 我们假设n对p取模为0,不是的话把多余部分暴力然后把n变为模p为0。 然后n以内的可以分成两类:是p的倍数和不是p的倍数。 设第...
阅读(264) 评论(0)

reward

题目大意球的个数在0..M中,将球分到N个盒子里,每个盒子可以没有,问方案数,答案模P。 N,M,P<=10^9,将P分成互不互质的数的乘积,且这些数均可表示为质数的幂,最大的数<=10^5。隔板问题我们可以看作将M个球放入N+1个盒子里,由于每个盒子可以没有,所以方案数为CNN+MC_{N+M}^N 考虑该如何进行组合数取模呢?中国剩余定理将P分解成互不互质的数的乘积,且这些数均可表示为质数的...
阅读(582) 评论(0)

五校联考六T1

题目大意求ϕ(ab)\phi(a^b)。a,b<=10^12。水题一道我们可以知道aba^b只含有a的质因子。 因此我们根据欧拉函数的三条性质可得 ϕ(ab)=ab∗p1−1p1∗...∗pm−1pm\phi(a^b)=a^b*\frac{p1-1}{p1}*...*\frac{pm-1}{pm} 其中p1~pm都为a的质因子且不重不漏。 那么对a分解质因数即可。...
阅读(323) 评论(0)

君と彼女の恋

题目大意及模型转换:找出有多少个集合满足以下要求: 1、所有数模M两两不同 2、所有数之和为N N<=10^18,M<=100。结果很大,要求模一个大质数。 集合包含同样的数,而顺序不同视为不同集合。小思路:为了满足约束1,可以先选出一些余数(0~M-1),然后不断给其中的余数加M(这样显然这个数模M不会改变),直至达到N。也就是说,题目转换为选一些余数,使余数之和与N对模M同余,并统计将这...
阅读(399) 评论(0)
    个人资料
    • 访问:250733次
    • 积分:10087
    • 等级:
    • 排名:第1807名
    • 原创:743篇
    • 转载:4篇
    • 译文:0篇
    • 评论:187条
    最新评论
    文章分类