[51nod1355]斐波那契的最小公倍数

题目大意求n个斐波那契数的最小公倍数。做法首先斐波那契数列有性质(fn,fm)=f(n,m)(f_n,f_m)=f_{(n,m)} 具体证明不证了,烂大街的性质了。 构造数列g满足 fn=Πd|ngdf_n=\Pi_{d|n}g_d 可以用莫比乌斯反演求出g gn=Πd|nfμ(nd)dg_n=\Pi_{d|n}f_d^{\mu(\frac{n}{d})} 接下来我们知道求lcm可以转化...
阅读(9) 评论(0)

[bzoj4815][CQOI2017]小Q的表格

题目描述小Q是个程序员。 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理。每当小Q不知道如何解决 时,就只好向你求助。为了完成任务,小Q需要列一个表格,表格有无穷多行,无穷多列,行和列都从1开始标号。 为了完成任务,表格里面每个格子都填了一个整数,为了方便描述,小Q把第a行第b列的整数记为f(a,b),为了完成 任务,这个表格要满足一些条件:(1)对任意的正...
阅读(32) 评论(0)

[JZOJ5134][SDOI省队集训2017]三元组

题目大意求∑ai=1∑bj=1∑ck=1[(i,j)=1][(i,k)=1][(j,k)=1]\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c[(i,j)=1][(i,k)=1][(j,k)=1]推式子首先假设a<=b<=c。 第一步转化为 ∑ai=1∑bj=1,(j,i)=1∑ck=1,(k,i)=1[(j,k)=1]\sum_{i=1}^a\sum_{j=1,(j,i...
阅读(64) 评论(0)

[bzoj4816][SDOI2017]数字表格

题目描述Doris刚刚学习了fibonacci数列。用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是f[gcd(i,j)],其中gcd(i,j)表示i, j的最大公约数。Doris的表格中共有n×m个数,她想知道这些数的乘积是多少。答案对10^9+7取...
阅读(73) 评论(0)

统计

题目描述给定n,k,求满足一下条件的整数数组a[]的数量: 1.a[]中共有k个元素; 2. a[i] ∈ [1,n]; 3. ∀i∈[1,k),a[i]≤a[i+1]; 4、gcd(a1,a2…ak)=1 答案可能很大,请mod(109+7)后输出瞎做首先可以反演 ∑nd=1μ(d)∗C⌊nd⌋−1k+⌊nd⌋−1\sum_{d=1}^n\mu(...
阅读(50) 评论(0)

[bzoj4305]数列的gcd

题目描述给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N)。 现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], b[2], …, b[N],满足: (1)1<=b[i]<=M(1<=i<=N); (2)gcd(b[1], b[2], …, b[N])=d; (3)恰好有K个位置i使得a[i]<>bi 注:gcd(x1,x2,…,xn)为x1...
阅读(99) 评论(0)

[51nod 1222]最小公倍数计数

题目大意求有多少对a和b满足a<=b且l<=[a,b]<=r数论题区间[l,r]答案等于[1,r]-[1,l-1] a<=b暂且不考虑。为了方便,接下来都不写下取整,出现除法即为整除。 ∑ni=1∑nj=1[ij(i,j)<=n]\sum_{i=1}^n\sum_{j=1}^n[\frac{ij}{(i,j)}<=n] ∑nd=1∑ni=1∑nj=1[(i,j)=d]∗[ijd<=n]\sum...
阅读(165) 评论(0)

[51nod 1594]Gcd and Phi

题目大意求所有(i,j)满足1<=i<=n和1<=j<=n,phi(i)和phi(j)的gcd的欧拉函数值和。数论题挺简单的。 枚举gcd然后莫比乌斯反演一波。 接下来的式子中需要用到的均能够进行n log n预处理。 式子不太想写了, 可以看看代码。#include #include #include #define fo(i,a,b) f...
阅读(141) 评论(0)

[51nod 1223]分数等式的数量

题目大意有这样一个分数等式:1/X + 1/Y = 1/N,(X,Y,N > 0)。给出L,求有多少满足X < Y <= L的等式。 例如:L = 12,满足条件的等式有3个,分别是:1/3 + 1/6 = 1/2, 1/4 + 1/12 = 1/3, 1/6 + 1/12 = 1/4。数论题大师张俊不教我我不会。。 其实就是求多少对(a,b)满足a+b|ab 设d=(a,b),a1*d=a,...
阅读(119) 评论(0)

[51nod 1375]再选数

题目描述从前有n个正整数,我们令它为a[1]到a[n]。现在要从选出恰好k个数(如果k=-1则为选任意个数,但是至少选一个),要求这些数的最大公约数是1,问有多少种方案? 答案可能很大,模998,244,353输出。搞一发可以设f[x]表示选出恰好k个数gcd为x的方案数。 设g[x]表示选出恰好k个数gcd为x的倍数。 于是就可以莫比乌斯反演一发。 求f[1]即可。#include<cst...
阅读(104) 评论(0)

太阳神

题目描述太阳神拉很喜欢最小公倍数,有一天他想到了一个关于最小公倍数的题目。 求满足如下条件的数对(a,b)对数:a,b均为正整数且a,bn。其中的lcm当然表示最小公倍数。答案对1,000,000,007取模推式子我们先做个补集转化。 然后就是统计这样的三元组(a,b,d)个数了 1、a*b*d<=n 2、(a,b)=1 a和b定了,d的取值就有nab\frac{...
阅读(135) 评论(0)

求和

题目描述推一下∑i=1n∑j=1mμ(i)∗μ(j)∗∑d|ijd\sum_{i=1}^n\sum_{j=1}^m\mu(i)*\mu(j)*\sum_{d|ij}d 对于每一个d|ij,一定可以把d拆成d=ab满足a|i且b|j,我们可以考虑枚举a和b。因为一个d有多种拆法,为了避免重复,需保证(a,j/b)=1,因为如果(a,j/b)=k>1的话,a/k和bk也是一种合法答案。 还记得莫比乌...
阅读(104) 评论(0)

[bzoj2818]gcd

题目大意求∑i=1n∑j=1n(i,j)是质数\sum_{i=1}^n\sum_{j=1}^n(i,j)是质数有趣方法很容易想到莫比乌斯反演啦,但本弱智打了另外的弱智方法。 我们知道对于j<ij<i,若有(i,j)=1,那么就有(i*k,j*k)=k。 也就是说只要k是质数就可以算进答案。 于是线性筛,筛出欧拉函数,并处理前缀质数个数。 那么i对于答案的贡献是phi(i)∗sum(n/i)p...
阅读(275) 评论(2)

[bzoj2440][zsoi2011]完全平方数

题目大意找到从小到大第k个不含有平方因子的数。二分答案+容斥原理首先我们可以很容易想到二分答案,然后转化为一个判定性问题。 那么现在要解决的是如何求1~n内有多少不含平方因子的数。 可以想到容斥原理。 即ans=∑(−1)i∗n以内含有至少i个平方因子的数ans=\sum(-1)^i*n以内含有至少i个平方因子的数莫比乌斯函数观察上面的式子,转化一下 ans=∑√ni=1n/(i∗i)∗(−...
阅读(135) 评论(0)

[bzoj2693&bzoj2194]Crash的数字表格&jzptab

题目大意ans=∑i=1n∑j=1m[i,j]ans=\sum_{i=1}^n\sum_{j=1}^m[i,j] 求出ans并模一个数mo(两道题mo不同但都是常数,其中一个是质数另外一个不是) 两题的区别在于询问是否多组。 n,m<=10^7单组询问首先假设n<=mn<=m ans=∑i=1n∑j=1m[i,j]ans=\sum_{i=1}^n\sum_{j=1}^m[i,j] ans=...
阅读(277) 评论(3)
18条 共2页1 2 下一页 尾页
    个人资料
    • 访问:164335次
    • 积分:8279
    • 等级:
    • 排名:第2235名
    • 原创:645篇
    • 转载:5篇
    • 译文:0篇
    • 评论:159条
    公告
    幻梦终醒,本无不散之宴,却不悔付此华年。
    最新评论
    文章分类