关闭

子串

题目描述SA题朴素大概要个很高的复杂度。 想一个高端一点的暴力,可以只枚举两个后缀,对于这两个后缀任意前缀之间lcp可以列出数学式子,这个式子与这两个后缀的长度以及它们的lcp长度有关。 接下来我们知道lcp等于一段区间height的最小值。 因此写个sa,然后根据height建立笛卡尔树。 接着递归维护需要维护的信息,每次以一个点为lcp值统计答案。 式子因为忘了怎么推就不推啦!#inc...
阅读(139) 评论(0)

[bzoj4671]异或图

题目描述定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1…s, 设 S = {G1, G2, … , Gs}, 请问 S 有多少个子集的异 或为一个连通图?斯特林反演用贝尔数的时间来枚举子集划分。 规定被划...
阅读(259) 评论(2)

[bzoj4827]gift

题目描述FFT首先可以看做第二个+c,这个c可以为负数。 把第二个倍长。 拆式子容易发现。 需要求出∑n−1i=0∑n−1j=0a[i]∗b[i+j]\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}a[i]*b[i+j] 的最小值 求出这个剩余部分是关于c的二次函数,用初中数学知识求解。 这个玩意怎么求》考虑把b翻转。 设c[2n−j]=∑n−1i=0∑n−1j=0a[...
阅读(251) 评论(0)

[luoguP3598]Koishi Loves Number Theory

题目大意第i个数是xai+1−1x−1\frac{x^{ai+1}-1}{x-1} 求n个数的lcm结论(xn−1,xm−1)=x(n,m)−1(x^n-1,x^m-1)=x^{(n,m)}-1 可以用辗转相除法来证明。 (xn−1,xm−1)=(xn−xm,xm−1)=(xm∗(xn−m−1),xm−1)(x^n-1,x^m-1)=(x^n-x^m,x^m-1)=(x^m*(x^{n-m}-...
阅读(119) 评论(0)

[51nod1187]寻找分数

题目大意求整数p和q使得a/b<q/p<c/da/b<q/p=b,显然可以先减去几个整数变成真分数。 那么如果a<ba<b呢? ab<qp<cd\frac{a}{b}<\frac{q}{p}<\frac{c}{d} dc<pq<ba\frac{d}{c}<\frac{p}{q}<\frac{b}{a} 递归下去计算。...
阅读(108) 评论(0)

序列

题目大意随机序列a。 a0=0。 ai以pi%为ai-1再加1,否则为0。 求序列和的平方的期望。DP设fi表示1~i的和的平方期望,gi则表示和的期望。 根据(a+b)^2=a^2+b^2+2ab fi=∑i−1j=−1(fj+s2[i−j−1]+2∗gj∗s1[i−j−1])∗(1−pj+1)∗Πi−1k=j+2pkfi=\sum_{j=-1}^{i-1}(fj+s2[i-j-1]+2...
阅读(94) 评论(0)

[bzoj4722]由乃

题目描述由于一周目的由乃穿越到了三周目,并带来了巨大的影响,改变了三周目所有未来日记所有者的命运所以三周目的 神Deus准备不利用未来日记来决定把神的位置交给谁Deus特别崇拜某知名社会主义国家领导人,因为他的寿命比神 还长,所以他想钦定下一个卡密,而不通过选举他决定钦定三周目的由乃成为卡密,去和一周目的雪辉重逢(终于 做了一件好事了)但是,既然是钦定,那么肯定还是要做做样子的,以防某些来自香...
阅读(405) 评论(1)

[51nod 1333]无聊的数学家

题目描述http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1333做法很有趣的题目。 首先,怎么知道对方无法100%猜中? 考虑对方什么时候100%猜中。显然是拿了个质数。 因此和S一定不可以被表示成质数+1,不然对方100%猜中。 B说的那句话也就是告诉了C这样的信息“我的数不是质数+1” 那么为什么C就猜出来了呢...
阅读(121) 评论(0)

类欧几里得算法小结

基本定义f(a,b,c,n)=∑ni=0⌊ai+bc⌋f(a,b,c,n)=\sum_{i=0}^n\lfloor\frac{ai+b}{c}\rfloor g(a,b,c,n)=∑ni=0i⌊ai+bc⌋g(a,b,c,n)=\sum_{i=0}^ni\lfloor\frac{ai+b}{c}\rfloor h(a,b,c,n)=∑ni=0⌊ai+bc⌋2h(a,b,c,n)=\sum_{i=...
阅读(464) 评论(0)

[bzoj4401]块的计数

题目大意给定一颗树,对树进行树分块使得每块点数相同,求方案数TLE算法容易观察出,假如块大小定了,那么至多只有一种方案。 怎么分块呢?设size[x]表示x子树中还未被分块的节点数量。 像普通size一样求。 退出x时,如果size[x]=c即块大小,那么可以形成一块,size[x]清0。 最后若size[1]为0,代表分块成功。 复杂度n根号n,TLE#include #...
阅读(142) 评论(0)

多边形序列70分

题目描述猜结论我们猜测如果出现相邻的两个R(注意第一个和最后一个是R也算),那么就一定不合法。同时,一个合法的序列还要能够组成直角多边形。 假设序列有x个L,y个R 90x+270y=180(n-2)且x+y=n 解得x=n/2+2,y=n/2-2 所以n为奇数是GG的,n为偶数时L与R的个数是确定的。 讨论三种情况: 1、第一个是L最后一个是R 2、第一个是R最后一个是L 3、第一...
阅读(142) 评论(0)

[51nod 1537]分解

题目大意是否存在整数m使得(1+√2)n=√m+√(m−1)(1+√2)^n=√m+√(m-1)结论首先n=1存在解。 假设n=k时存在解,易证n=k+1也必然存在解。 于是设(1+√2)n=an+bn√2(1+√2)^n=an+bn√2 a与b可以用矩阵乘法快速算出,再分类讨论n的奇偶性得到m。#include #include #define fo(...
阅读(266) 评论(0)

地下的太阳

题目描述结论显然对于e数组只需要知道最后一行,很容易得到结论: 我们需要知道前m-1行所有数的和,设为t,那么e[m][i]=n∗im+te[m][i]=n*i^m+t 如何计算t呢? 对于计算前i行的和,假设已经知道前i-1行的和为t,现在计算t’。 显然t′=t∗n+∑nj=1jit'=t*n+\sum_{j=1}^nj^i 涉及到求自然数幂和,可以用第一类斯特林数的方法预处理,详见我...
阅读(167) 评论(0)

Jason做奥数

前言富榄好劲啊!题目大意TL做法为了方便,下面的L都用M代替。 显然可以分开每个质数来讨论。 枚举一个pcp^c,所带了的贡献是(pc)(m−⌊mpc+1⌋)n−(m−⌊mpc⌋)n(p^c)^{(m-\lfloor\frac{m}{p^{c+1}}\rfloor)^n-(m-\lfloor\frac{m}{p^c}\rfloor)^n} 为什么?很简单,LCM包含pcp^c表示p的指数至少有...
阅读(158) 评论(0)

求和

题目描述推一下∑i=1n∑j=1mμ(i)∗μ(j)∗∑d|ijd\sum_{i=1}^n\sum_{j=1}^m\mu(i)*\mu(j)*\sum_{d|ij}d 对于每一个d|ij,一定可以把d拆成d=ab满足a|i且b|j,我们可以考虑枚举a和b。因为一个d有多种拆法,为了避免重复,需保证(a,j/b)=1,因为如果(a,j/b)=k>1的话,a/k和bk也是一种合法答案。 还记得莫比乌...
阅读(138) 评论(0)
20条 共2页1 2 下一页 尾页
    个人资料
    • 访问:209371次
    • 积分:9123
    • 等级:
    • 排名:第2025名
    • 原创:689篇
    • 转载:4篇
    • 译文:0篇
    • 评论:180条
    最新评论
    文章分类