关闭

[bzoj2818]gcd

377人阅读 评论(2) 收藏 举报
分类:

题目大意

i=1nj=1n(i,j)

有趣方法

很容易想到莫比乌斯反演啦,但本弱智打了另外的弱智方法。
我们知道对于j<i,若有(i,j)=1,那么就有(i*k,j*k)=k。
也就是说只要k是质数就可以算进答案。
于是线性筛,筛出欧拉函数,并处理前缀质数个数。
那么i对于答案的贡献是phi(i)sum(n/i)
最后答案乘以2再加上sum[n]即可。

#include<cstdio> 
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int maxd=10000000+10;
int sum[maxd],phi[maxd],pri[maxd];
bool bz[maxd];
int i,j,k,l,t,n,m,top;
ll ans;
int main(){
    scanf("%d",&n);
    bz[1]=1;
    fo(i,2,n){
        if (!bz[i]){
            pri[++top]=i;
            phi[i]=i-1;
        }
        fo(j,1,top){
            if ((ll)i*pri[j]>n) break;
            bz[i*pri[j]]=1;
            if (i%pri[j]==0){
                phi[i*pri[j]]=phi[i]*pri[j];
                break;
            }
            phi[i*pri[j]]=phi[i]*(pri[j]-1);
        }
    }
    fo(i,1,n) sum[i]=sum[i-1]+(!bz[i]);
    fo(i,1,n) ans+=(ll)phi[i]*sum[n/i];
    printf("%lld\n",ans*2+sum[n]);
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:247955次
    • 积分:10024
    • 等级:
    • 排名:第1825名
    • 原创:737篇
    • 转载:4篇
    • 译文:0篇
    • 评论:187条
    最新评论
    文章分类