【强连通分量】抢掠计划

原创 2012年03月29日 22:08:31

Siruseri城中的道路都是单向的。不同的道路由路口连接。按照法律的规定,在每个路口都设立了一个Siruseri银行的ATM取款机。令人奇怪的是,Siruseri的酒吧也都设在路口,虽然并不是每个路口都设有酒吧。 Banditji计划实施Siruseri有史以来最惊天动地的ATM抢劫。他将从市中心出发,沿着单向道路行驶,抢劫所有他途径的ATM机,最终他将在一个酒吧庆祝他的胜利。 使用高超的黑客技术,他获知了每个ATM机中可以掠取的现金数额。他希望你帮助他计算从市中心出发最后到达某个酒吧时最多能抢劫的现金总数。他可以经过同一路口或道路任意多次。但只要他抢劫过某个ATM机后,该ATM机里面就不会再有钱了。 例如,假设该城中有6个路口,道路的连接情况如下图所示:

市中心在路口1,由一个入口符号→来标识,那些有酒吧的路口用双圈来表示。每个ATM机中可取的钱数标在了路口的上方。在这个例子中,Banditji能抢劫的现金总数为47,实施的抢劫路线是:1-2-4-1-2-3-5。
输入格式
第一行包含两个整数N、M。N表示路口的个数,M表示道路条数。接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号。接下来N行,每行一个整数,按顺序表示每个路口处的ATM机中的钱数。接下来一行包含两个整数S、P,S表示市中心的编号,也就是出发的路口。P表示酒吧数目。接下来的一行中有P个整数,表示P个有酒吧的路口的编号。
输出格式
输出一个整数,表示Banditji从市中心开始到某个酒吧结束所能抢劫的最多的现金总数。
数据范围
50%的输入保证N, M<=3000。所有的输入保证N, M<=500000。每个ATM机中可取的钱数为一个非负整数且不超过4000。输入数据保证你可以从市中心沿着Siruseri的单向的道路到达其中的至少一个酒吧。
输入样例
6 7
1 2
2 3
3 5
2 4
4 1
2 6
6 5
10
12
8
16
1
5
1 4
4 3 5 6
输出样例
47
这是一道强连通分量问题。

首先对原图求所有强连通分量并进行缩点,建立新图。

再用SPFA算法求最长路即可。(注意此时不能使用Dijkstra算法。)

Accode:

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <string>
#include <set>
#include <queue>
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))

using std::set;
using std::pair;
using std::make_pair;
const char fi[] = "atm.in";
const char fo[] = "atm.out";
const int maxN = 500010;
const int SIZE = 0xfffff;
const int MAX = 0x3f3f3f3f;
const int MIN = ~MAX;

struct Edge {int v; Edge *next;};
Edge *edge1[maxN], *edge2[maxN];
bool marked[maxN], bar[maxN], final[maxN];
int q[maxN], money[maxN], dist[maxN];
int cnt[maxN], DFN[maxN], Low[maxN];
int belong[maxN], stack[maxN];
int n, m, S, P, top, Index, Bcnt, ans, f, r;

void init_file()
{
    freopen(fi, "r", stdin);
    freopen(fo, "w", stdout);
    return;
}

inline int getint()
{
    int res = 0; char tmp;
    while (!isdigit(tmp = getchar()));
    do res = (res << 3) + (res << 1) + tmp - '0';
    while (isdigit(tmp = getchar()));
    return res;
}

inline void insert2(int u, int v)
{
    if (u == v) return;
    for (Edge *p = edge2[u]; p; p = p -> next)
        if (p -> v == v) return;
	//重新建图的时候要记得判重,
	//以免重边造成枚举量很大。
    Edge *p = new Edge;
    p -> v = v;
    p -> next = edge2[u];
    edge2[u] = p;
    return;
}

inline void insert1(int u, int v)
{
    Edge *p = new Edge;
    p -> v = v;
    p -> next = edge1[u];
    edge1[u] = p;
    return;
}

void readdata()
{
    n = getint();
    for (m = getint(); m; --m)
    {
        int u = getint(), v = getint();
        insert1(u, v);
    }
    for (int i = 1; i < n + 1; ++i)
        money[i] = getint();
    S = getint();
    for (P = getint(); P; --P)
        bar[getint()] = 1;
    return;
}

void tarjan(int u)
{
    Low[u] = DFN[u] = ++Index;
    marked[stack[++top] = u] = true;
    for (Edge *p = edge1[u]; p; p = p -> next)
    {
        int v = p -> v;
        if (!DFN[v])
        {
            tarjan(v);
            Low[u] = min(Low[u], Low[v]);
        }
        else if (marked[v])
            Low[u] = min(Low[u], DFN[v]);
    }
    if (Low[u] == DFN[u])
    {
        ++Bcnt;
        int tmp = u;
        do
        {
            marked[tmp = stack[top--]] = 0;
            belong[tmp] = Bcnt;
            final[Bcnt] |= bar[tmp];
            cnt[Bcnt] += money[tmp];
        } while (tmp != u);
    }
    return;
}

inline int Spfa()
{
    memset(marked, 0, sizeof marked);
    memset(dist, ~0x3f, sizeof dist);
    int ans = final[belong[S]]
            ? cnt[belong[S]] : 0;
	//注意起点不是终点的情况。
    top = 0;
    q[r++] = belong[S];
    dist[belong[S]] = cnt[belong[S]];
    marked[belong[S]] = 1;
    while (f < r)
    {
        int u = q[f++];
        marked[u] = 0;
        for (Edge *p = edge2[u]; p; p = p -> next)
        if (dist[u] + cnt[p -> v] > dist[p -> v])
        {
            dist[p -> v] = dist[u] + cnt[p -> v];
            if (final[p -> v])
                ans = max(ans, dist[p -> v]);
            if (!marked[p -> v])
            {
                marked[p -> v] = 1;
                q[r++] = p -> v;
            }
        }
    }
    return ans;
}

void work()
{
    tarjan(S);
    for (int i = 1; i < n + 1; ++i)
    for (Edge *p = edge1[i]; p; p = p -> next)
    if (belong[p -> v] != belong[i])
        insert2(belong[i], belong[p -> v]);
    printf("%d\n", Spfa());
    return;
}

int main()
{
    init_file();
    readdata();
    work();
    return 0;
}

#undef min
#undef max

相关文章推荐

APIO2009 抢掠计划

【题意】 给一张图,每个点有一个ATM机,而其中的部分点是酒吧(可作为终点)。 抢掠计划就是从起点(1号点)出发,到终点的途中,将ATM机中的钱抢走。 问最多能抢到多少钱。 【题解】 很显然...

【强连通缩点+最长路】抢掠计划

抢掠计划 Siruseri城中的道路都是单向的。不同的道路由路口连接。按照法律的规定, 在每个路口都设立了一个 Siruseri 银行的 ATM 取款机。令人奇怪的是,Siruseri 的酒吧...

APIO2009 抢掠计划

Problem H: 抢掠计划 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 108  Solved: 63 [Submit][Status][Web...

[APIO2009]抢掠计划(强连通分量+缩点+拓扑排序+dp)

题意: 给定一个有向图,从指定起点出发,到任意一个指定终点停止,求经过的所有结点的最大点权和。点数、边数 因为一个强连通分量内的点相互可达,所以如果要经过其中一个点,就应经过它所在的强连通...
  • cjk_cjk
  • cjk_cjk
  • 2015年05月03日 23:30
  • 409

强连通分量的Kosaraju算法实现

  • 2014年04月14日 20:41
  • 979KB
  • 下载

图中强连通分量的寻找

  • 2011年03月19日 22:21
  • 358KB
  • 下载

【强连通分量+缩点】 POJ 2186 Popular Cows

先求出强连通,再缩点。然后qiu

有向图的强连通分量

  • 2015年07月17日 11:54
  • 651KB
  • 下载

识别连通分量

  • 2017年08月25日 16:24
  • 91KB
  • 下载

强连通分量的三种算法分析

本文将介绍什么是强连通分量,求解强连通分量的三种算法Kosaraju算法、Tarjan算法、Garbow算法。因为算法的过程很容易理解,真正难的是如何理解算法的思想,写主这个的时候我也不定完全明白算法...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【强连通分量】抢掠计划
举报原因:
原因补充:

(最多只允许输入30个字)