【强连通分量】抢掠计划

原创 2012年03月29日 22:08:31

Siruseri城中的道路都是单向的。不同的道路由路口连接。按照法律的规定,在每个路口都设立了一个Siruseri银行的ATM取款机。令人奇怪的是,Siruseri的酒吧也都设在路口,虽然并不是每个路口都设有酒吧。 Banditji计划实施Siruseri有史以来最惊天动地的ATM抢劫。他将从市中心出发,沿着单向道路行驶,抢劫所有他途径的ATM机,最终他将在一个酒吧庆祝他的胜利。 使用高超的黑客技术,他获知了每个ATM机中可以掠取的现金数额。他希望你帮助他计算从市中心出发最后到达某个酒吧时最多能抢劫的现金总数。他可以经过同一路口或道路任意多次。但只要他抢劫过某个ATM机后,该ATM机里面就不会再有钱了。 例如,假设该城中有6个路口,道路的连接情况如下图所示:

市中心在路口1,由一个入口符号→来标识,那些有酒吧的路口用双圈来表示。每个ATM机中可取的钱数标在了路口的上方。在这个例子中,Banditji能抢劫的现金总数为47,实施的抢劫路线是:1-2-4-1-2-3-5。
输入格式
第一行包含两个整数N、M。N表示路口的个数,M表示道路条数。接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号。接下来N行,每行一个整数,按顺序表示每个路口处的ATM机中的钱数。接下来一行包含两个整数S、P,S表示市中心的编号,也就是出发的路口。P表示酒吧数目。接下来的一行中有P个整数,表示P个有酒吧的路口的编号。
输出格式
输出一个整数,表示Banditji从市中心开始到某个酒吧结束所能抢劫的最多的现金总数。
数据范围
50%的输入保证N, M<=3000。所有的输入保证N, M<=500000。每个ATM机中可取的钱数为一个非负整数且不超过4000。输入数据保证你可以从市中心沿着Siruseri的单向的道路到达其中的至少一个酒吧。
输入样例
6 7
1 2
2 3
3 5
2 4
4 1
2 6
6 5
10
12
8
16
1
5
1 4
4 3 5 6
输出样例
47
这是一道强连通分量问题。

首先对原图求所有强连通分量并进行缩点,建立新图。

再用SPFA算法求最长路即可。(注意此时不能使用Dijkstra算法。)

Accode:

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <string>
#include <set>
#include <queue>
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))

using std::set;
using std::pair;
using std::make_pair;
const char fi[] = "atm.in";
const char fo[] = "atm.out";
const int maxN = 500010;
const int SIZE = 0xfffff;
const int MAX = 0x3f3f3f3f;
const int MIN = ~MAX;

struct Edge {int v; Edge *next;};
Edge *edge1[maxN], *edge2[maxN];
bool marked[maxN], bar[maxN], final[maxN];
int q[maxN], money[maxN], dist[maxN];
int cnt[maxN], DFN[maxN], Low[maxN];
int belong[maxN], stack[maxN];
int n, m, S, P, top, Index, Bcnt, ans, f, r;

void init_file()
{
    freopen(fi, "r", stdin);
    freopen(fo, "w", stdout);
    return;
}

inline int getint()
{
    int res = 0; char tmp;
    while (!isdigit(tmp = getchar()));
    do res = (res << 3) + (res << 1) + tmp - '0';
    while (isdigit(tmp = getchar()));
    return res;
}

inline void insert2(int u, int v)
{
    if (u == v) return;
    for (Edge *p = edge2[u]; p; p = p -> next)
        if (p -> v == v) return;
	//重新建图的时候要记得判重,
	//以免重边造成枚举量很大。
    Edge *p = new Edge;
    p -> v = v;
    p -> next = edge2[u];
    edge2[u] = p;
    return;
}

inline void insert1(int u, int v)
{
    Edge *p = new Edge;
    p -> v = v;
    p -> next = edge1[u];
    edge1[u] = p;
    return;
}

void readdata()
{
    n = getint();
    for (m = getint(); m; --m)
    {
        int u = getint(), v = getint();
        insert1(u, v);
    }
    for (int i = 1; i < n + 1; ++i)
        money[i] = getint();
    S = getint();
    for (P = getint(); P; --P)
        bar[getint()] = 1;
    return;
}

void tarjan(int u)
{
    Low[u] = DFN[u] = ++Index;
    marked[stack[++top] = u] = true;
    for (Edge *p = edge1[u]; p; p = p -> next)
    {
        int v = p -> v;
        if (!DFN[v])
        {
            tarjan(v);
            Low[u] = min(Low[u], Low[v]);
        }
        else if (marked[v])
            Low[u] = min(Low[u], DFN[v]);
    }
    if (Low[u] == DFN[u])
    {
        ++Bcnt;
        int tmp = u;
        do
        {
            marked[tmp = stack[top--]] = 0;
            belong[tmp] = Bcnt;
            final[Bcnt] |= bar[tmp];
            cnt[Bcnt] += money[tmp];
        } while (tmp != u);
    }
    return;
}

inline int Spfa()
{
    memset(marked, 0, sizeof marked);
    memset(dist, ~0x3f, sizeof dist);
    int ans = final[belong[S]]
            ? cnt[belong[S]] : 0;
	//注意起点不是终点的情况。
    top = 0;
    q[r++] = belong[S];
    dist[belong[S]] = cnt[belong[S]];
    marked[belong[S]] = 1;
    while (f < r)
    {
        int u = q[f++];
        marked[u] = 0;
        for (Edge *p = edge2[u]; p; p = p -> next)
        if (dist[u] + cnt[p -> v] > dist[p -> v])
        {
            dist[p -> v] = dist[u] + cnt[p -> v];
            if (final[p -> v])
                ans = max(ans, dist[p -> v]);
            if (!marked[p -> v])
            {
                marked[p -> v] = 1;
                q[r++] = p -> v;
            }
        }
    }
    return ans;
}

void work()
{
    tarjan(S);
    for (int i = 1; i < n + 1; ++i)
    for (Edge *p = edge1[i]; p; p = p -> next)
    if (belong[p -> v] != belong[i])
        insert2(belong[i], belong[p -> v]);
    printf("%d\n", Spfa());
    return;
}

int main()
{
    init_file();
    readdata();
    work();
    return 0;
}

#undef min
#undef max

【APIO2009】【强连通分量】【DAG】抢掠计划

先将原图缩点,原图变为DAG,然后记忆化搜索找最大价值即可,水题。。。 代码: #include #include #include using namespace std; const int ...
  • njlcazl
  • njlcazl
  • 2013年04月10日 21:36
  • 579

Codevs1161 抢掠计划

前言:这题A得挺值,不仅学会了tarjan以及递归转非递归,还熟悉了spfa,不错。 鸣谢:hzwer、t14t41t。 题目大意:给定一张有向有环图,有点权,求一条路上得到点权的最大值。 思路:一个...
  • Little_Flower_0
  • Little_Flower_0
  • 2015年10月13日 21:42
  • 422

APIO2009 抢掠计划

Problem H: 抢掠计划 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 108  Solved: 63 [Submit][Status][Web...
  • u012866104
  • u012866104
  • 2015年06月22日 04:10
  • 1028

[APIO2009]抢掠计划

题面:Description Siruseri城中的道路都是单向的。不同的道路由路口连接。按照法律的规定,在每个路口都设立了一个Siruseri银行的ATM取款机。令人奇怪的是,Siruseri的酒...
  • oi_Konnyaku
  • oi_Konnyaku
  • 2017年07月16日 11:24
  • 173

强连通分量 的 Kosaraju算法

1. 定义 在有向图G中,如果两个顶点vi,vj有一条从vi到vj的有向路径,同时还有一条从vj到vi的路径,则称两个顶点强连通。如果有向图G中的每对顶点都强连通,称G是一个强连通图。有向图的极大强连...
  • woniu317
  • woniu317
  • 2014年04月14日 09:52
  • 1545

强连通分量-tarjan算法模板详解

这里主要给出以为大牛的分析,但是大牛的模板代码没有注释,我也比较笨,还是看了很久,这里给出模板的详细注释...
  • ZYY173533832
  • ZYY173533832
  • 2013年10月10日 19:05
  • 2882

通过深度优先搜索求强连通分量

基本步骤: 1.对图G进行深度优先搜索,记录每个节点的d,f; 2.求图G的转置Gt(所有节点不变,边的方向变反); 3.按照步骤一所求的节点的f,按照降序,对Gt进行深度优先搜索,得到的深度优...
  • qq_23014515
  • qq_23014515
  • 2016年04月14日 15:59
  • 979

搜索强连通分量_Tarjan算法_C++实现

在byvoid的博客上学习了下Tarjan算法,在未看byvoid给出的C++代码情况下,自行写了一个简单的实现 ^^ 注意: 为了快速编码,易阅读和理解代码,体会的算法的思路为主的思路下,我尽量...
  • yyr2008
  • yyr2008
  • 2016年01月09日 22:20
  • 657

有向图强连通分量 Tarjan算法【java实现】

注:本文章上部分内容转载自http://www.cppblog.com/sosi/archive/2010/09/26/127797.html;一方面是网上有很多关于tarjan算法的介绍,我觉得都没...
  • u013376508
  • u013376508
  • 2016年03月28日 09:59
  • 1817

强连通分量的三种算法分析

本文将介绍什么是强连通分量,求解强连通分量的三种算法Kosaraju算法、Tarjan算法、Garbow算法。因为算法的过程很容易理解,真正难的是如何理解算法的思想,写主这个的时候我也不定完全明白算法...
  • wei_tianzhu
  • wei_tianzhu
  • 2016年07月28日 21:51
  • 1384
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【强连通分量】抢掠计划
举报原因:
原因补充:

(最多只允许输入30个字)