poj 1074 Parallel Expectations

原创 2012年03月21日 10:18:47

题目链接:http://poj.org/problem?id=1074

题目大意,求两个程序并行运行各个变量的期望值,都说黑书上讲的有问题,那应该就有问题吧。

解法:这里copy一下大牛的:

设状态 T[ i ][ j ] 为程序1执行i条指令,程序2执行j条指令后的变量平均值,P1为当前状态发生且最后执行程序1指令i的概率,P2为当前状态发生且执行程序2指令j的概率
  则可以推出,T[ i ][ j ] = (T[ i-1 ][ j ]*P1+T[ i ][ j-1 ]*P2)/(P1+P2) 不过需要注意几点:
1.理解题意很重要,这个题很容易误解 。
  如果认为每种指令执行的情况是一样的话,就会求错方程:(设N[ i ][ j ]为状态T[ i ][ j ]数量 )
    P1 = N[ i-1 ][ j ]/N[ i ][ j ]
    P2 = N[ i ][ j-1 ]/N[ i ][ j ]
  下面是POJ discuss 里得解释,看了这个就会明白了。
  Example :
   Exactly one execution of the sample input results in S=8, and the
   probability of that execution is not 1/C(8,4)=1/70, but (1/2)^4=1/16,
   since the program automatically execute remaining operations.
   It is true that there are 70 different executions, but not all of
   them have the same probability.
   正确的概率计算为:(设N1为程序1指令总条数,N2为程序2指令总条数 )
    if ( i == N1 && j == N2 ) P1 = P[ i-1 ][ j ]  ,P2 = P[ i ][ j-1 ]
    if ( i  < N1 && j == N2 ) P1 = P[ i-1 ][ j ]  ,P2 = P[ i ][ j-1 ]/2
    if ( i == N1 && j  < N2 ) P1 = P[ i-1 ][ j ]/2,P2 = P[ i ][ j-1 ]
    if ( i  < N1 && j  < N2 ) P1 = P[ i-1 ][ j ]/2,P2 = P[ i ][ j-1 ]/2
    P[ i ][ j ] = P1 + P2

#include<string.h>
#include<iostream>
#include<sstream>
#include<string>
#include<stdio.h>
#include<map>
using namespace std;
int l[2],n;
string v1[30][2],v2[30][2],v3[30][2];//存储变量
char op[30][2];//存储操作符
int n1[30][2],n2[30][2],n3[30][2];//存储常量
map<string,int>mp;//hash
struct node
{
    double t[12];
    double r[2][2];
    double p;
    void init()
    {
        memset(t,0,sizeof(t));
        memset(r,0,sizeof(r));
        p=1.0;
    }
    void run(int id,int o)
    {
        int V1,V2,V3;
        double u1,u2;
        V1=mp[v1[(o-1)/4][id]];
        V2=mp[v2[(o-1)/4][id]];
        V3=mp[v3[(o-1)/4][id]];
        if(V1)
            u1=t[V1];
        else
            u1=n1[(o-1)/4][id];
        if(V2)
            u2=t[V2];
        else
            u2=n2[(o-1)/4][id];
        switch(o%4)
        {
            case 1:r[0][id]=u1;break;
            case 2:r[1][id]=u2;break;
            case 3:
                if(op[(o-1)/4][id]=='+')
                    r[0][id]=r[0][id]+r[1][id];
                else
                    r[0][id]=r[0][id]-r[1][id];break;
            case 0:t[V3]=r[0][id];break;
        }

    }
}dp[125][125];
bool check(string s,int &a)//读取常量
{
    if(s[0]-'0'>=0&&s[0]-'0'<=9)
    {
        istringstream sin(s);
            sin>>a;
        return 0;
    }
    return 1;
}
void solve()
{
    int i,j,k,k1,k2;
    double p1,p2,p;
    node f1,f2;
    dp[0][0].init();
    for(i=0;i<=l[0];i++)
        for(j=0;j<=l[1];j++)
        {
            if(i|j)
            {
                if(i==0)
                {
                    f1=dp[i][j-1];
                    p1=f1.p*0.5;p2=0;
                    f1.run(1,j);
                }
                else if(j==0)
                {
                    f2=dp[i-1][j];
                    p2=f2.p*0.5;
                    p1=0;
                    f2.run(0,i);
                }
                else
                {
                    f1=dp[i][j-1];
                    f2=dp[i-1][j];
                    p1=f1.p*(i==l[0]?1:0.5);
                    p2=f2.p*(j==l[1]?1:0.5);
                    f1.run(1,j);
                    f2.run(0,i);
                }
                dp[i][j].p=p=p1+p2;
                for(k=1;k<=n;k++)
                {
                    dp[i][j].t[k]=(f1.t[k]*p1+f2.t[k]*p2)/p;
                }

                for(k1=0;k1<=1;k1++)
                    for(k2=0;k2<=1;k2++)
                    {
                        dp[i][j].r[k1][k2]=(f1.r[k1][k2]*p1+f2.r[k1][k2]*p2)/p;
                    }
            }
        }
    for(i=1;i<=n;i++)
        printf("%.4lf\n",dp[l[0]][l[1]].t[i]);
    printf("\n");
}
int main()
{
    int ti,i,j;
    char ch;
    string str;
    scanf("%d",&ti);
    while (cin.peek()=='\n')
   getchar();
    while(ti--)
    {
        mp.clear();
        for(i=0;i<=1;i++)
        {
            while(cin.peek()=='\n')//吸收多余空行
                getchar();
            for(j=0;1;j++)
            {
                 v1[j][i]=v2[j][i]=v3[j][i]="";
                 n1[j][i]=n2[j][i]=n3[j][i]=0;
                while(cin.peek()!=':'&&cin.peek()!='\n')
                {
                    ch=getchar();
                    if(ch!=' ')
                    v3[j][i]+=toupper(ch);
                }
                if(v3[j][i]=="END")
                    break;
                if(check(v3[j][i],n3[j][i])==1)
                    mp[v3[j][i]]++;
                for(ch=getchar();cin.peek()==' ';)
                    ch=getchar();
                for(ch=getchar();cin.peek()==' ';)
                    ch=getchar();
                while(cin.peek()!='+'&&cin.peek()!='-')
                {
                    ch=getchar();
                    if(ch!=' ')
                    v1[j][i]+=toupper(ch);
                }
                if(check(v1[j][i],n1[j][i])==1)
                    mp[v1[j][i]]++;
                scanf("%c",&op[j][i]);
                for(;cin.peek()==' ';)
                    ch=getchar();
                while(cin.peek()!=' '&&cin.peek()!='\n')
                {
                    ch=getchar();
                    if(ch!=' ')
                        v2[j][i]+=toupper(ch);
                }
                if(check(v2[j][i],n2[j][i])==1)
                    mp[v2[j][i]]++;
                while(cin.peek()==' ')
                ch=getchar();
                while(cin.peek()=='\n')
                    getchar();
            }
           l[i]=j*4;
        }
        map<string,int>::iterator it=mp.begin();//map内部已排序
        for(i=1;it!=mp.end();i++,it++)
            mp[it->first]=i;
        n=i-1;
        solve();
    }
}


 


 

POJ 1050/ ZOJ 1074:To the Max - DP求子矩阵和

题意:即最大子段和问题在二维空间上的推广思路:一维的情况:设有数组a0,a1…an,找除其中连续的子段,使它们的和达到最大。假如对于子段:9 2 -16 2dp[i]表示:以ai结尾的子段中的最大子段...

两道状态压缩DP-- POJ 3254,HDU 1074

两道基础的状态压缩背包 POJ 3254,HDU 1074

JMockit实践--(3)Expectations

声明: Author:赵志乾 Date:2017-8-5 Declaration:All Right Reserved!!! 1、

“Invalid place to record expectations”的解决方案

这两天在慢慢学junit,在写好一个简单的项目,要做单元测试时,打算从servlet开始测试,但是一上来就碰到了HttpServletRequest和HttpServletResponse这两个家伙。...
  • hoverq
  • hoverq
  • 2014年08月07日 23:52
  • 1007

Smart grid expectations [In My View]

  • 2010年02月01日 18:07
  • 1.07MB
  • 下载

DelphiForPHPv2·1·0·1074_Patch_Crack

  • 2009年01月01日 07:33
  • 20KB
  • 下载

xmu 1074: 安全网络 ver.1(MST模型)

1074: 安全网络 ver.1 题目描述   现在有个一个内部局域网络,里面有N台机器。为了某种安全原因的考虑,每两台机器之间的通讯都是经过加密的。由于不同机器之间传输的内容不同,所以他们通讯采...

hdu1074动态规划状态压缩

题意:家庭作业,告诉你家庭作业名字,所用时间,最后期限
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1074 Parallel Expectations
举报原因:
原因补充:

(最多只允许输入30个字)