poj 1074 Parallel Expectations

原创 2012年03月21日 10:18:47

题目链接:http://poj.org/problem?id=1074

题目大意,求两个程序并行运行各个变量的期望值,都说黑书上讲的有问题,那应该就有问题吧。

解法:这里copy一下大牛的:

设状态 T[ i ][ j ] 为程序1执行i条指令,程序2执行j条指令后的变量平均值,P1为当前状态发生且最后执行程序1指令i的概率,P2为当前状态发生且执行程序2指令j的概率
  则可以推出,T[ i ][ j ] = (T[ i-1 ][ j ]*P1+T[ i ][ j-1 ]*P2)/(P1+P2) 不过需要注意几点:
1.理解题意很重要,这个题很容易误解 。
  如果认为每种指令执行的情况是一样的话,就会求错方程:(设N[ i ][ j ]为状态T[ i ][ j ]数量 )
    P1 = N[ i-1 ][ j ]/N[ i ][ j ]
    P2 = N[ i ][ j-1 ]/N[ i ][ j ]
  下面是POJ discuss 里得解释,看了这个就会明白了。
  Example :
   Exactly one execution of the sample input results in S=8, and the
   probability of that execution is not 1/C(8,4)=1/70, but (1/2)^4=1/16,
   since the program automatically execute remaining operations.
   It is true that there are 70 different executions, but not all of
   them have the same probability.
   正确的概率计算为:(设N1为程序1指令总条数,N2为程序2指令总条数 )
    if ( i == N1 && j == N2 ) P1 = P[ i-1 ][ j ]  ,P2 = P[ i ][ j-1 ]
    if ( i  < N1 && j == N2 ) P1 = P[ i-1 ][ j ]  ,P2 = P[ i ][ j-1 ]/2
    if ( i == N1 && j  < N2 ) P1 = P[ i-1 ][ j ]/2,P2 = P[ i ][ j-1 ]
    if ( i  < N1 && j  < N2 ) P1 = P[ i-1 ][ j ]/2,P2 = P[ i ][ j-1 ]/2
    P[ i ][ j ] = P1 + P2

#include<string.h>
#include<iostream>
#include<sstream>
#include<string>
#include<stdio.h>
#include<map>
using namespace std;
int l[2],n;
string v1[30][2],v2[30][2],v3[30][2];//存储变量
char op[30][2];//存储操作符
int n1[30][2],n2[30][2],n3[30][2];//存储常量
map<string,int>mp;//hash
struct node
{
    double t[12];
    double r[2][2];
    double p;
    void init()
    {
        memset(t,0,sizeof(t));
        memset(r,0,sizeof(r));
        p=1.0;
    }
    void run(int id,int o)
    {
        int V1,V2,V3;
        double u1,u2;
        V1=mp[v1[(o-1)/4][id]];
        V2=mp[v2[(o-1)/4][id]];
        V3=mp[v3[(o-1)/4][id]];
        if(V1)
            u1=t[V1];
        else
            u1=n1[(o-1)/4][id];
        if(V2)
            u2=t[V2];
        else
            u2=n2[(o-1)/4][id];
        switch(o%4)
        {
            case 1:r[0][id]=u1;break;
            case 2:r[1][id]=u2;break;
            case 3:
                if(op[(o-1)/4][id]=='+')
                    r[0][id]=r[0][id]+r[1][id];
                else
                    r[0][id]=r[0][id]-r[1][id];break;
            case 0:t[V3]=r[0][id];break;
        }

    }
}dp[125][125];
bool check(string s,int &a)//读取常量
{
    if(s[0]-'0'>=0&&s[0]-'0'<=9)
    {
        istringstream sin(s);
            sin>>a;
        return 0;
    }
    return 1;
}
void solve()
{
    int i,j,k,k1,k2;
    double p1,p2,p;
    node f1,f2;
    dp[0][0].init();
    for(i=0;i<=l[0];i++)
        for(j=0;j<=l[1];j++)
        {
            if(i|j)
            {
                if(i==0)
                {
                    f1=dp[i][j-1];
                    p1=f1.p*0.5;p2=0;
                    f1.run(1,j);
                }
                else if(j==0)
                {
                    f2=dp[i-1][j];
                    p2=f2.p*0.5;
                    p1=0;
                    f2.run(0,i);
                }
                else
                {
                    f1=dp[i][j-1];
                    f2=dp[i-1][j];
                    p1=f1.p*(i==l[0]?1:0.5);
                    p2=f2.p*(j==l[1]?1:0.5);
                    f1.run(1,j);
                    f2.run(0,i);
                }
                dp[i][j].p=p=p1+p2;
                for(k=1;k<=n;k++)
                {
                    dp[i][j].t[k]=(f1.t[k]*p1+f2.t[k]*p2)/p;
                }

                for(k1=0;k1<=1;k1++)
                    for(k2=0;k2<=1;k2++)
                    {
                        dp[i][j].r[k1][k2]=(f1.r[k1][k2]*p1+f2.r[k1][k2]*p2)/p;
                    }
            }
        }
    for(i=1;i<=n;i++)
        printf("%.4lf\n",dp[l[0]][l[1]].t[i]);
    printf("\n");
}
int main()
{
    int ti,i,j;
    char ch;
    string str;
    scanf("%d",&ti);
    while (cin.peek()=='\n')
   getchar();
    while(ti--)
    {
        mp.clear();
        for(i=0;i<=1;i++)
        {
            while(cin.peek()=='\n')//吸收多余空行
                getchar();
            for(j=0;1;j++)
            {
                 v1[j][i]=v2[j][i]=v3[j][i]="";
                 n1[j][i]=n2[j][i]=n3[j][i]=0;
                while(cin.peek()!=':'&&cin.peek()!='\n')
                {
                    ch=getchar();
                    if(ch!=' ')
                    v3[j][i]+=toupper(ch);
                }
                if(v3[j][i]=="END")
                    break;
                if(check(v3[j][i],n3[j][i])==1)
                    mp[v3[j][i]]++;
                for(ch=getchar();cin.peek()==' ';)
                    ch=getchar();
                for(ch=getchar();cin.peek()==' ';)
                    ch=getchar();
                while(cin.peek()!='+'&&cin.peek()!='-')
                {
                    ch=getchar();
                    if(ch!=' ')
                    v1[j][i]+=toupper(ch);
                }
                if(check(v1[j][i],n1[j][i])==1)
                    mp[v1[j][i]]++;
                scanf("%c",&op[j][i]);
                for(;cin.peek()==' ';)
                    ch=getchar();
                while(cin.peek()!=' '&&cin.peek()!='\n')
                {
                    ch=getchar();
                    if(ch!=' ')
                        v2[j][i]+=toupper(ch);
                }
                if(check(v2[j][i],n2[j][i])==1)
                    mp[v2[j][i]]++;
                while(cin.peek()==' ')
                ch=getchar();
                while(cin.peek()=='\n')
                    getchar();
            }
           l[i]=j*4;
        }
        map<string,int>::iterator it=mp.begin();//map内部已排序
        for(i=1;it!=mp.end();i++,it++)
            mp[it->first]=i;
        n=i-1;
        solve();
    }
}


 


 

zoj 1022 - Parallel Expectations

题目:有两个指令序列,在运行时,可以运行任意指令序列的下一条指令,每条指令要一直运行到结束,             求两组指令运行结束后,每个变量里面存储值的期望。 分析:dp,模拟。这道题算不...
  • mobius_strip
  • mobius_strip
  • 2014年10月09日 10:07
  • 1097

POJ 1074 Parallel Expectations 笔记

一个CPU上运行两个程序。求每个变量可能的平均值,按字母序输出。
  • woniupengpeng
  • woniupengpeng
  • 2017年05月09日 21:08
  • 504

Human Gene Functions - POJ 1080 UVaLive 2344 dp

Human Gene Functions Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17...
  • u014733623
  • u014733623
  • 2014年08月11日 11:34
  • 516

ZOJ一览表

zoj 一览表     第一套 动态规划 :ZJU1558 难度:比较简单 博弈问题 :ZJU1913 难度:中等偏难 递归计算 :...
  • t_tmj
  • t_tmj
  • 2015年08月12日 20:23
  • 388

zoj 1022 Parallel Expectations

假设目前的状态是已经执行完程序1的第i条指令,并且执行完了程序2的第j条指令,那么记到达该状态的概率为p[i][j] 那么到达p[i][j]状态有两种可能,一种是程序1已经执行了i-1条指令,程序2...
  • zju2016
  • zju2016
  • 2017年06月25日 20:46
  • 112

poj 1281 MANAGER(简单模拟题)

MANAGER Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2504   Ac...
  • u012860428
  • u012860428
  • 2014年07月16日 20:24
  • 648

POJ1182 - 食物链(带权并查集)

题目链接:http://poj.org/problem?id=1182题目大意:动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。 现有N个动物,以1-...
  • ACM_Fish
  • ACM_Fish
  • 2017年05月13日 10:25
  • 732

hdu_1074

这道题不难,但是做出来了还是觉得很有成就感,首先是以前不会状态dp,第二是这几天温度变化太大,自己状态不怎么好。。。唉,看图论看的快疯了。。早上起来发现做的梦都是关于图论的。。啊!!图论坑爹啊。。T ...
  • zz_1215
  • zz_1215
  • 2011年11月22日 22:15
  • 870

九度OJ 1074 对称平方数

题目1074:对称平方数 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3671 解决:1624 题目描述: 打印所有不超过n(n ...
  • wdkirchhoff
  • wdkirchhoff
  • 2014年12月28日 14:51
  • 2321

hdu1074之状态压缩dp

Doing Homework Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...
  • xingyeyongheng
  • xingyeyongheng
  • 2014年03月21日 20:34
  • 4362
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1074 Parallel Expectations
举报原因:
原因补充:

(最多只允许输入30个字)