poj 1191 棋盘分割

原创 2012年03月24日 20:07:38

题目链接:http://poj.org/problem?id=1191

题目大意:见黑书116页。

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<string>
#include<queue>
#include<algorithm>
#include<vector>
#include<stack>
#include<list>
#include<math.h>
#include<iostream>
#include<map>
using namespace std;
#define inf 0x3f3f3f3f
#define Max 110
int max(int a,int b)
{
	return a>b?a:b;
}
int min(int a,int b)
{
	return a<b?a:b;
}
int n=8,m;
int dp[10][10][10][10][100];
int sum[10][10],rsum[10][10],val[10][10][10][10];
int num;
void init()
{
    int i,j,k,l;
    for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
        {
            for(k=1;k<=i;k++)
            {
                sum[i][j]+=rsum[k][j];
              //  printf("i %d j %d %d\n",i,j,sum[i][j]);
            }
        }
    for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
            for(k=i;k<=n;k++)
                for(l=j;l<=n;l++)
                {
                    val[i][j][k][l]=(sum[k][l]-sum[i-1][l]-sum[k][j-1]+sum[i-1][j-1])
                    *(sum[k][l]-sum[i-1][l]-sum[k][j-1]+sum[i-1][j-1]);
                  //  printf("i %d j %d k %d l %d val %d\n",i,j,k,l,val[i][j][k][l]);
                }
}
int main()
{
  //  freopen("out.txt","w",stdout);
    int i,j,k,l,g,x,y;
    double cnt=0;
    scanf("%d",&m);
    for(i=1;i<=n;i++)
    {
        rsum[i][0]=0;
        for(j=1;j<=n;j++)
        {
            scanf("%d",&num);
            cnt+=num;
            rsum[i][j]=rsum[i][j-1]+num;

        }
    }
    init();
   // memset(dp,-1,sizeof(dp));
    for(g=1;g<=m;g++)
    {
    for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
            for(k=i;k<=n;k++)
                for(l=j;l<=n;l++)
                {
                    if(g==1)
                    {
                        dp[i][j][k][l][1]=val[i][j][k][l];
                        continue;
                    }
                    dp[i][j][k][l][g]=inf;
                    for(x=i;x<k;x++)
                    {
                        if(dp[x+1][j][k][l][g-1]!=inf)
                            dp[i][j][k][l][g]=min(dp[i][j][k][l][g],
                            dp[x+1][j][k][l][g-1]+val[i][j][x][l]);
                        if(dp[i][j][x][l][g-1]!=-1)
                            dp[i][j][k][l][g]=min(dp[i][j][k][l][g],
                            dp[i][j][x][l][g-1]+val[x+1][j][k][l]);
                    }
                    for(y=j;y<l;y++)
                    {
                        if(dp[i][y+1][k][l][g-1]!=inf)
                             dp[i][j][k][l][g]=min(dp[i][j][k][l][g],
                            dp[i][y+1][k][l][g-1]+val[i][j][k][y]);
                        if(dp[i][j][k][y][g-1]!=-1)
                            dp[i][j][k][l][g]=min(dp[i][j][k][l][g],
                            dp[i][j][k][y][g-1]+val[i][y+1][k][l]);
                    }
//printf("i %d j %d k %d l %d g %d dp %d\n",i,j,k,l,g,dp[i][j][k][l][g]);
                }

    }
            double ans;
            ans=(double)dp[1][1][8][8][m]/m-(cnt/m)*(cnt/m);
           // printf("dp %d cnt %lf\n",dp[1][1][8][8][m],cnt);
            printf("%.3lf",sqrt(ans));
}


 

相关文章推荐

【动态规划+递归】:poj1191,棋盘分割

http://poj.org/problem?id=1191 明白几点: 1)最终的均方差可以转变成:sqrt( sigma[ i:1-m ]( xi*xi ) / n - ( sum(al...
  • mmc2015
  • mmc2015
  • 2015年12月03日 21:38
  • 329

poj1191 棋盘分割

棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14504   Accepted...

POJ1191棋盘分割 NYOJ87

另外分享朋友们一起开发的oj:该题地址:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=87/*POJ1191棋盘分隔,刘汝佳黑书面有解析,大概...

POJ 1191 棋盘分割 (记忆化搜索)

题意: 思路:先要对公式化简,我的数学好差,花了好长时间化简。然后用记忆化搜索,dp[d][x1][y1][x2][y2] 存储 把大小为(x1,y1)(x2,y2)的矩阵分成d份的最小值。。 ...

Poj 1191 棋盘分割

题目大意:将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着...

poj 1191 棋盘分割 动态规划

棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11457   Accepted...

poj 1191 棋盘分割

黑书例题,上午写了写。黑书上讲的很清楚,经化简,只需求得切割后每个矩形的总分的平方和最小即可。然后可以横切和竖切,枚举切的位置即可。初始化s中存的是x1 y1 到 x2 y2的和的平方,这个可以直接循...

【NOI1999】poj1191 棋盘分割

动态规划
  • sdfzyhx
  • sdfzyhx
  • 2016年07月26日 21:53
  • 353

POJ1191--棋盘分割--DP

Description 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每...
  • a305657
  • a305657
  • 2013年04月05日 10:05
  • 580

洛谷 P1436 POJ 1191 [NOI1999 D1T2] 棋盘分割

动态规划+数论
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1191 棋盘分割
举报原因:
原因补充:

(最多只允许输入30个字)