【NOI2005】维护数列

原创 2016年05月30日 18:50:06

Description

请写一个程序,要求维护一个数列,支持以下6种操作:(请注意,格式栏中的下划线‘ _ ’表示实际输入文件中的空格)
1. 插入 INSERT_posi_tot_c1_c2_…_ctot 在当前数列的第posi个数字后插入tot个数字:c1, c2, …, ctot;若在数列首插入,则posi为0
2. 删除 DELETE_posi_tot 从当前数列的第posi个数字开始连续删除tot个数字
3. 修改 MAKE-SAME_posi_tot_c 将当前数列的第posi个数字开始的连续tot个数字统一修改为c
4. 翻转 REVERSE_posi_tot 取出从当前数列的第posi个数字开始的tot个数字,翻转后放入原来的位置
5. 求和 GET-SUM_posi_tot 计算从当前数列开始的第posi个数字开始的tot个数字的和并输出
6. 求和最大的子列 MAX-SUM 求出当前数列中和最大的一段子列,并输出最大和

Input

输入文件的第1行包含两个数N和M,N表示初始时数列中数的个数,M表示要进行的操作数目。
第2行包含N个数字,描述初始时的数列。
以下M行,每行一条命令,格式参见问题描述中的表格。

Output

对于输入数据中的GET-SUM和MAX-SUM操作,向输出文件依次打印结果,每个答案(数字)占一行。

Sample Input

9 8
2 -6 3 5 1 -5 -3 6 3
GET-SUM 5 4
MAX-SUM
INSERT 8 3 -5 7 2
DELETE 12 1
MAKE-SAME 3 3 2
REVERSE 3 6
GET-SUM 5 4
MAX-SUM

Sample Output

-1
10
1
10

Data Constraint

你可以认为在任何时刻,数列中至少有1个数。
输入数据一定是正确的,即指定位置的数在数列中一定存在。
50%的数据中,任何时刻数列中最多含有30 000个数;
100%的数据中,任何时刻数列中最多含有500 000个数。
100%的数据中,任何时刻数列中任何一个数字均在[-1 000, 1 000]内。
100%的数据中,M ≤20 000,插入的数字总数不超过4 000 000个,输入文件大小不超过20MBytes

分析

这种带翻转、插入、删除操作的维护序列的问题,很容易想到splay

用splay维护区间[l,r]的以下几个数:
sum(表示区间和)
ls(表示以l为左端的子列的和的最大值)
rs(表示以r为右端的子列的和的最大值)
ms(表示此区间所有子列的和的最大值)

然后看每个操作:

插入、删除和一般没什么区别,先选取区间,然后操作。

make_same:选取区间,然后打个标记。

翻转:同样是打标记。下传时,把对应区间的ls和rs交换,其它不变(因为翻转后,维护的ls,rs,ms,sum对应的是该区间从右到左遍历出来的数列,其中总和、ms是不会变的,ls,rs也只是换到了另一边)

求和:也是和一般的没什么区别。

求和最大的子列:当在splay旋转时进行update(x)操作时,我们把节点son[x][0],x,son[x][1] 分别看成一个区间,先合并son[x][0]和x,再与son[x][1]合并。注意:要把区间[1..n](n为当前序列数的个数)选取出来再输出(或者把维护序列时前后加的数赋值为一个很小的数),否则会影响答案。

空间

开4000000的数组会爆空间,但是题目限制的每一时刻数的数量最多为500000,那么可以回收删除操作后多出的空间。具体是用一个栈来存当前可用的空间,插入时从栈顶弹出,删除时加入栈。

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int maxn=500010,Null=500002;

int m,n,root,top,son[maxn][2],fa[maxn],mask[maxn],sum[maxn],size[maxn],ls[maxn],rs[maxn],ms[maxn],a[maxn],st[maxn],A[maxn],data[maxn];

bool flip[maxn],bz;

char c;

int read()
{
    int x=bz=0;
    for (c=getchar();(c<'0' || c>'9') && c!='-';c=getchar());
    if (c=='-')
    {
        bz=1; c=getchar();
    }
    for (;c>='0' && c<='9';c=getchar()) x=x*10+c-48;
    if (bz) x=-x;
    return x;
}

void make_same(int x,int y)
{
    a[x]=mask[x]=y; sum[x]=y*size[x];
    if (y>0) ls[x]=rs[x]=ms[x]=sum[x];//子列不能为空
    else ls[x]=rs[x]=ms[x]=y;
}

void push_down(int x)//下传标记
{
    if (flip[x])
    {
        son[x][0]^=son[x][1]^=son[x][0]^=son[x][1];
        flip[son[x][0]]^=1; flip[son[x][1]]^=1;
        ls[son[x][0]]^=rs[son[x][0]]^=ls[son[x][0]]^=rs[son[x][0]];
        ls[son[x][1]]^=rs[son[x][1]]^=ls[son[x][1]]^=rs[son[x][1]];
        flip[x]=0;
    }
    if (mask[x]!=Null)
    {
        if (son[x][0]!=Null) make_same(son[x][0],mask[x]);
        if (son[x][1]!=Null) make_same(son[x][1],mask[x]);
        mask[x]=Null;
    }
}

void calc(int ll,int lr,int lm,int ls,int rl,int rr,int rm,int rs,int &l,int &r,int &m)
{
    l=max(ll,ls+rl);
    r=max(rr,rs+lr);
    m=max(max(lm,rm),lr+rl);
}//合并两个区间的ls,rs,ms

void update(int x)
{
    if (son[x][0]==Null)
    {
        if (son[x][1]==Null)
        {
            ls[x]=rs[x]=ms[x]=a[x];
        }else calc(a[x],a[x],a[x],a[x],ls[son[x][1]],rs[son[x][1]],ms[son[x][1]],sum[son[x][1]],ls[x],rs[x],ms[x]);
    }else
    {
        if (son[x][1]==Null)
        calc(ls[son[x][0]],rs[son[x][0]],ms[son[x][0]],sum[son[x][0]],a[x],a[x],a[x],a[x],ls[x],rs[x],ms[x]);
        else
        {
            calc(ls[son[x][0]],rs[son[x][0]],ms[son[x][0]],sum[son[x][0]],a[x],a[x],a[x],a[x],ls[x],rs[x],ms[x]);
            calc(ls[x],rs[x],ms[x],sum[son[x][0]]+a[x],ls[son[x][1]],rs[son[x][1]],ms[son[x][1]],sum[son[x][1]],ls[x],rs[x],ms[x]);
        }
    }
    sum[x]=sum[son[x][0]]+sum[son[x][1]]+a[x];
    size[x]=size[son[x][0]]+size[son[x][1]]+1;
}

void Rotate(int x,int t)
{
    int y=fa[x];
    if (y!=root)
    {
        if (son[fa[y]][0]==y) son[fa[y]][0]=x;else son[fa[y]][1]=x;
    }else root=x;
    fa[x]=fa[y]; fa[y]=x; son[y][t]=son[x][1-t]; son[x][1-t]=y; if (son[y][t]!=Null) fa[son[y][t]]=y;
    update(y);
}

void splay(int x,int f)
{
    while (fa[x]!=f)
    {
        int y=fa[x];
        if (fa[y]==f)
        {
            push_down(y); push_down(x);
            if (son[y][0]==x) Rotate(x,0); else Rotate(x,1);
        }else
        {
            int z=fa[y];
            push_down(z); push_down(y); push_down(x);
            if (son[y][0]==x)
            {
                if (son[z][0]==y)
                {
                    Rotate(y,0); Rotate(x,0);
                }else
                {
                    Rotate(x,0); Rotate(x,1);
                }
            }else
            {
                if (son[z][0]==y)
                {
                    Rotate(x,1); Rotate(x,0);
                }else
                {
                    Rotate(y,1); Rotate(x,1);
                }
            }
        }
    }
    update(x);
}

void Select(int x,int f)
{
    int i=root;
    while (size[son[i][0]]!=x)
    {
        if (size[son[i][0]]>x) i=son[i][0];
        else
        {
            x-=size[son[i][0]]+1; i=son[i][1];
        }
        push_down(i);
    }
    splay(i,f);
}

void Delete(int x,int t)
{
    int tot=1; data[1]=son[x][t];
    for (int i=1;i<=tot;i++)
    {
        st[++top]=data[i];//回收
        if (son[data[i]][0]!=Null) data[++tot]=son[data[i]][0];
        if (son[data[i]][1]!=Null) data[++tot]=son[data[i]][1];
    }
    son[x][t]=Null;
    splay(x,Null);
}

void build(int l,int r,int &root)
{
    int mid=(l+r)/2;
    a[root=st[top--]]=A[mid];//在栈顶得到它的编号
    if (l<mid)
    {
        build(l,mid-1,son[root][0]);
        fa[son[root][0]]=root;
    }else son[root][0]=Null;
    if (mid<r)
    {
        build(mid+1,r,son[root][1]);
        fa[son[root][1]]=root;
    }else son[root][1]=Null;
    update(root); mask[root]=Null; flip[root]=0;
}

int main()
{
    n=read(); m=read();
    for (int i=Null-1;i>=0;i--) st[++top]=i;
    for (int i=1;i<=n;i++) A[i]=read();
    build(0,n+1,root); fa[root]=Null;
    while (m--)
    {
        for (c=getchar();c<'A' || c>'R';c=getchar());
        if (c=='G')
        {
            for (c=getchar();c!='-';c=getchar());
            int l=read(),tot=read(),r=l+tot;
            Select(l-1,Null); Select(r,root);
            printf("%d\n",sum[son[son[root][1]][0]]);
        }else if (c=='I')
        {
            int x=read(),tot=read(); n+=tot;
            for (int i=1;i<=tot;i++) A[i]=read();
            Select(x,Null); Select(x+1,root);
            build(1,tot,son[son[root][1]][0]); fa[son[son[root][1]][0]]=son[root][1];
            splay(son[son[root][1]][0],Null);
        }else if (c=='D')
        {
            int l=read(),tot=read(),r=l+tot; n-=tot;
            Select(l-1,Null); Select(r,root);
            Delete(son[root][1],0);
        }else if (c=='R')
        {
            int l=read(),tot=read(),r=l+tot;
            Select(l-1,Null); Select(r,root);
            int t=son[son[root][1]][0];
            flip[t]^=1;
            ls[t]^=rs[t]^=ls[t]^=rs[t];
            splay(t,Null);
        }else
        {
            c=getchar(); c=getchar();
            if (c=='K')
            {
                for (c=getchar();c!='-';c=getchar());
                int l=read(),tot=read(),r=l+tot,C=read();
                Select(l-1,Null); Select(r,root);
                make_same(son[son[root][1]][0],C);
                splay(son[son[root][1]][0],Null);
            }else
            {
                for (c=getchar();c!='-';c=getchar());
                for (c=getchar();c>='A' && c<='Z';c=getchar());
                Select(0,Null); Select(n+1,root);//
                printf("%d\n",ms[son[son[root][1]][0]]);
            }
        }
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

[NOI2005]维修数列 (推荐 Splay tree)

转载请注明出处,谢谢 http://blog.csdn.net/ACM_cxlove?viewmode=contents           by---cxlove 据说是NOI中...

CODEVS-1758-维护数列-NOI2005-splay

描述 要求支持区间插入、区间修改、区间翻转、区间删除、区间求和 和求和最大的子列. 分析 从最开始学完splay做了翻转区间后就想做这个题目, 结果WA了N次后失去调试的信心, 40分收场(这...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

bsoj 2246 【NOI2005】维护数列(splay解法)

【NOI2005】维护数列 Time Limit:20000MS  Memory Limit:200000K Total Submit:274 Accepted:90 Des...
  • fp_hzq
  • fp_hzq
  • 2012-10-10 16:24
  • 1476

【SPLAY】NOI2005 维护数列

【NOI2005】维护数列 写一个程序,要求维护一个数列,支持以下6种操作:(请注意,格式栏中的下划线‘ _ ’表示实际输入文件中的空格)   1. 插入 INSERT_posi_tot_...

【平衡树维护序列】BZOJ1500(NOI2005)[维修数列]题解

BZOJ1500题解。

【NOI2005】维护数列

Description 请写一个程序,要求维护一个数列,支持以下6种操作:(请注意,格式栏中的下划线‘ _ ’表示实际输入文件中的空格)   1. 插入 INSERT_posi_tot_c1_c2_...

[题解]NOI2005 维护数列

Description Input 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目。 第2行包含N个数字,描述初始时的数列。 以下...

noi2005维护数列

请写一个程序,要求维护一个数列,支持以下 6 种操作:(请注意,格式栏 中的下划线‘ _ ’表示实际输入文件中的空格) 操作编号 输入文件中的格式 说明 1.  插入 ...

NOI2005维护数列

首先声明是codevs写法,bzoj限制64M必须动态分配内存,否则妥妥地MLE(0ms就T了) 原题就不打了。 巨型splay模板题,省选前两天突击splay就拿这道题练了练手。练了提取区间、区间...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)