关闭

[bzoj4385/POI2015]Wilcze doły

199人阅读 评论(0) 收藏 举报

Description

给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0。请找到最长的一段连续区间,使得该区间内所有数字之和不超过p。

Data Constraint

1≤d≤n≤2000000,0≤p≤10^16
每个数w[i]满足1≤w[i]≤10^9

分析

首先考虑一个区间[i,j],如果j-i≤d,那么显然把区间的元素全部变成0就是最优的。
如果j-i>d,那么要找到一个x,满足i≤x,x+d-1≤j,并且区间[i,j]的和减去[x,x+d-1]的和最小。设数组s为序列的前缀和,那么如果满足条件s[i]-s[j-1]-max(s[x+d-1]-s[x-1])≤p,区间[i,j]是可以更新答案的。
可以枚举区间的右端j,那么显然,满足条件的最小的i是随着j变大而变大的。
然后剩下的就是区间最大值了。
n达到了2000000,所以应该用O(n)的算法。考虑到i和j都是递增的,用单调队列维护即可。

/**************************************************************
    Problem: 4385
    User: worldwide
    Language: C++
    Result: Accepted
    Time:5796 ms
    Memory:24260 kb
****************************************************************/

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

const int maxn=2000005;

typedef long long LL;

int n,d,j,h,t,data[maxn],ans;

LL s[maxn],p;

char c;

int read()
{
    for (c=getchar();c<'0' || c>'9';c=getchar());
    int x=c-48;
    for (c=getchar();c>='0' && c<='9';c=getchar()) x=x*10+c-48;
    return x;
}

LL getmax()
{
    for (;h<=t && data[h]-d<j;h++);
    if (h>t) return 1e16;
    return s[data[h]]-s[data[h]-d];
}

int main()
{
    n=read(); scanf("%lld",&p); d=read();
    for (int i=1;i<=n;i++) s[i]=s[i-1]+read();
    ans=d;
    h=1;
    for (int i=d;i<=n;i++)
    {
        for (;h<=t && s[data[t]]-s[data[t]-d]<s[i]-s[i-d];t--);
        data[++t]=i;
        for (;s[i]-s[j]-getmax()>p;j++);
        if (i-j>ans) ans=i-j;
    }
    printf("%d\n",ans);
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:56008次
    • 积分:2379
    • 等级:
    • 排名:第17186名
    • 原创:182篇
    • 转载:0篇
    • 译文:0篇
    • 评论:32条
    最新评论