积性函数的性质及证明 + 线性筛

引言

在数论问题中,积性函数有着广泛的应用。
如在莫比乌斯反演问题中,函数变换之后如何快速维护前缀和往往是最重要也是最难的一步。如果维护的函数具有积性,那就可以尝试利用线性筛在 O ( n ) O(n) O(n)的时限内完成预处理,从而达到优化复杂度的神奇作用。
本文的大部分相关性质及公式来自:《线性筛与积性函数》- 贾志鹏
博主将试着证明其中的性质公式,严谨性可能欠缺,其目的主要是帮助大家理解并记忆


积性函数的定义和性质

定义: 对于一个定义域为 N + N^{+} N+的函数 f f f,对于任意两个互质的正整数 a , b a,b a,b,均满足 f ( a b ) = f ( a ) f ( b ) f(ab)=f(a)f(b) f(ab)=f(a)f(b),则称函数 f f f为积性函数
若对于任意整数 a , b a,b a,b都有 f ( a b ) = f ( a ) f ( b ) f(ab) = f(a)f(b) f(ab)=f(a)f(b),则函数 f f f被称为完全积性函数。

性质
(1)对于任意积性函数 f f f,均有 f ( 1 ) = 1 f(1) = 1 f(1)=1

证明:因 1 1 1与任何数都互质,假设存在一个正整数 a a a满足 f ( a ) ! = 0 f(a)!=0 f(a)!=0,故由定义: f ( a ) = f ( 1 ∗ a ) = f ( 1 ) f ( a ) f(a) = f(1*a) = f(1)f(a) f(a)=f(1a)=f(1)f(a)
f ( a ) f(a) f(a)不为 0 0 0,故等号两端同时消去一个 f ( a ) f(a) f(a),得:
f ( 1 ) = 1 f(1) = 1 f(1)=1
证毕。

(2)对于一个大于 1 1 1的正整数N,设 N = ∏ p i a i N = \prod p_i^{a_i} N=piai p i p_i pi为互不相同的素数。那么对于一个积性函数 f f f来说,有:
f ( N ) = f ( ∏ p i a i ) = ∏ f ( p i a i ) f(N) = f(\prod p_i^{a_i}) = \prod f(p_i^{a_i}) f(N)=f(piai)=f(piai)
f f f完全积性,则 f ( N ) = ∏ f ( p i ) a i f(N) = \prod f(p_i)^{a_i} f(N)=f(pi)ai

证明:由积性和完全积性的定义易得。


欧拉函数 φ \varphi φ

定义:对于正整数 n n n φ ( n ) \varphi(n) φ(n)是小于n的正整数中与n互质的个数。

定义式:若 n = ∏ p i a i n = \prod p_i^{a_i} n=piai
φ ( n ) = n ∏ ( 1 − 1 p i ) \varphi(n) = n \prod(1 - \frac{1}{p_i}) φ(n)=n(1pi1)

性质
(1)欧拉函数为积性函数,而不是完全积性函数。

证明:设两个互质的正整数 n , m n,m n,m
则:
φ ( n ) = n ∏ ( 1 − 1 p i ) \varphi(n) = n \prod(1 - \frac{1}{p_i}) φ(n)=n(1pi1)
φ ( m ) = m ∏ ( 1 − 1 p i ′ ) \varphi(m) =m \prod(1 - \frac{1}{p'_i}) φ(m)=m(1pi1)
φ ( n ) φ ( m ) = n ∏ ( 1 − 1 p i ) m ∏ ( 1 − 1 p i ′ ) = n m ∏ ( 1 − 1 p i ) ( 1 − 1 p i ′ ) \varphi(n)\varphi(m) = n \prod(1 - \frac{1}{p_i})m \prod(1 - \frac{1}{p'_i}) = nm\prod(1 - \frac{1}{p_i})(1 - \frac{1}{p'_i}) φ(n)φ(m)=n(1pi1)m(1pi1)=nm(1pi1)(1pi1)
n , m n,m n,m互质,故 p i , p i ′ p_i,p'_i pi,pi 各不相同,且均为 n m nm nm的质因子。

故推出:
φ ( n m ) = φ ( n ) φ ( m ) \varphi(nm) = \varphi(n)\varphi(m) φ(nm)=φ(n)φ(m)
积性函数性质得证。
而完全积性由上证明可见, n , m n,m n,m互质是一个严格且不可或缺的条件,可见,欧拉函数不是完全积性函数。

(2)假设存在一个素数 p p p和一个正整数 k k k,则: φ ( p k ) = p k − p k − 1 \varphi(p^k) = p^k - p^{k-1} φ(pk)=pkpk1
证明:

可以从反面来思考这件事,在小于 p k p^k pk且与其不互质的数有以下形式:
p ∗ 1 , p ∗ 2 , . . . p ∗ ( p k − 1 − 1 ) p*1,p*2,...p*(p^{k-1} - 1) p1,p2,...p(p

  • 6
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值