关闭

Pandas秘籍【第五章】

原文:Chapter 5 5.1 下载一个月的天气数据在处理自行车数据时,我需要温度和降水数据,来弄清楚人们下雨时是否喜欢骑自行车。 所以我访问了加拿大历史天气数据的网站,并想出如何自动获得它们。这里我们将获取 201 年 3 月的数据,并清理它们。以下是可用于在蒙特利尔获取数据的网址模板。url_template = "http://climate.weather.gc.ca/climateDat...
阅读(5) 评论(0)

Pandas秘籍【第四章】

原文:Chapter 4 import pandas as pd pd.set_option('display.mpl_style', 'default') # 使图表漂亮一些 figsize(15, 5)好的! 我们将在这里回顾我们的自行车道数据集。 我住在蒙特利尔,我很好奇我们是一个通勤城市,还是以骑自行车为乐趣的城市 - 人们在周末还是工作日骑自行车?4.1 向我们的DataFrame中刚添加...
阅读(7) 评论(0)

Pandas秘籍【第三章】

原文:Chapter 3 # 通常的开头 import pandas as pd# 使图表更大更漂亮 pd.set_option('display.mpl_style', 'default') figsize(15, 5)# 始终展示所有列 pd.set_option('display.line_width', 5000) pd.set_option('display.max_columns',...
阅读(7) 评论(0)

Pandas秘籍【第二章】

原文:Chapter 2 # 通常的开头 import pandas as pd # 使图表更大更漂亮 pd.set_option('display.mpl_style', 'default') pd.set_option('display.line_width', 5000) pd.set_option('display.max_columns', 60) figsize(15, 5)我们将在...
阅读(12) 评论(0)

Pandas秘籍【第一章】

第一章 原文:Chapter 1 import pandas as pd pd.set_option('display.mpl_style', 'default') # 使图表漂亮一些 figsize(15, 5) 1.1 从 CSV 文件中读取数据 您可以使用read_csv函数从CSV文件读取数据。 默认情况下,它假定字段以逗号分隔。 我们将从蒙特利尔(Montréal)...
阅读(11) 评论(0)

Netty源码分析之三【我就是大名鼎鼎的 EventLoop】

简述这一章是 Netty 源码分析 的第三章, 我将在这一章中大家一起探究一下 Netty 的 EventLoop 的底层原理, 让大家对 Netty 的线程模型有更加深入的了解.NioEventLoopGroup在[Netty 源码分析之 一 揭开 Bootstrap 神秘的红盖头]章节中我们已经知道了, 一个 Netty 程序启动时, 至少要指定一个 EventLoopGroup(如果使用到的是...
阅读(10) 评论(0)

Netty源码分析之二【贯穿Netty的大动脉──ChannelPipeline】

ChannelPipeline (一)前言这篇是 Netty 源码分析 的第二篇, 在这篇文章中, 我会为读者详细地分析 Netty 中的 ChannelPipeline 机制.Channel 与 ChannelPipeline相信大家都知道了, 在 Netty 中每个 Channel 都有且仅有一个 ChannelPipeline 与之对应, 它们的组成关系如下: 通过上图我们可以看到, 一个...
阅读(9) 评论(0)

Netty源码分析之一【揭开Bootstrap神秘的红盖头】

客户端这一章是 Netty 源码分析系列的第一章, 我打算在这一章中, 展示一下 Netty 的客户端和服务端的初始化和启动的流程, 给读者一个对 Netty 源码有一个大致的框架上的认识, 而不会深入每个功能模块. 本章会从 Bootstrap/ServerBootstrap 类 入手, 分析 Netty 程序的初始化和启动的流程.BootstrapBootstrap 是 Netty 提供的一个...
阅读(8) 评论(0)

Netty源码分析之零【分析环境搭建】

代码下载首先到 Netty 的 Github 仓库 中, 点击右边绿色的按钮:拷贝 git 地址: git@github.com:netty/netty.git 然后在终端中输入如下命令, 克隆 Netty 工程:/Users/xiongyongshun/works/learn_netty >>> git clone git@github.com:netty/netty.git Cloning i...
阅读(6) 评论(0)

Netty源码分析之番外篇【Java NIO的前生今世】

简介 Java NIO 是由 Java 1.4 引进的异步 IO. Java NIO 由以下几个核心部分组成: - Channel - Buffer - Selector NIO 和 IO 的对比 IO 和 NIO 的区别主要体现在三个方面: IO 基于流(Stream oriented), 而 NIO 基于 Buffer (Buffer oriented) IO 操作...
阅读(14) 评论(0)

JsonPath与Xpath对比学习

Xpath与JsonPath符号对比JSONPath表达式JSONPath表达式总是以与XPath相同的方式引用JSON结构表达式与XML文档结合使用。 由于JSON结构是通常是匿名的,并不一定有* root成员对象* JSONPath假设分配给外层对象的抽象名称$。JSONPath表达式可以使用点符号: $.store.book[0].title或方括号: $['store']['boo...
阅读(44) 评论(0)

Tensorflow实战学习(五十一)【生成式对抗网络】

生成式对抗网络(gennerative adversarial network,GAN),谷歌2014年提出网络模型。灵感自二人博弈的零和博弈,目前最火的非监督深度学习。GAN之父,Ian J.Goodfellow,公认人工智能顶级专家。 原理。 生成式对搞网络包含一个生成模型(generative model,G)和一个判别模型(discriminative model,D)。Ian J.G...
阅读(35) 评论(0)

Tensorflow实战学习(五十)【TensorFlow源代码解析】

TensorFlow目录结构。 ACKNOWLEDGMENTS #TensorFlow版本声明 ADOPTERS.md #使用TensorFlow的人员或组织列表 AUTHORS #TensorFlow作者的官方列表 BUILD CONTRIBUTING.md #TensorFlow贡献指导 ISSUE_TEMPLATE.md #提ISSUE的模板 LICENSE #版权许可 README.md...
阅读(43) 评论(0)

Tensorflow实战学习(四十九)【模型存储加载,队列线程,加载数据,自定义操作】

生成检查点文件(chekpoint file),扩展名.ckpt,tf.train.Saver对象调用Saver.save()生成。包含权重和其他程序定义变量,不包含图结构。另一程序使用,需要重新创建图形结构,告诉TensorFlow如何处理权重。 生成图协议文件(graph proto file),二进制文件,扩展名.pb,tf.tran.write_graph()保存,只包含图形结构,不包含...
阅读(35) 评论(0)

Tensorflow实战学习(四十八)【系统架构,设计理念,编程模型,API,作用域,批标准化,神经元函数优化】

系统架构。 自底向上,设备层、网络层、数据操作层、图计算层、API层、应用层。核心层,设备层、网络层、数据操作层、图计算层。最下层是网络通信层和设备管理层。 网络通信层包括gRPC(google Remote Procedure Call Protocol)和远程直接数据存取(Remote Direct Memory Access,RDMA),分布式计算需要。设备管理层包手包括TensorFl...
阅读(35) 评论(0)

Tensorflow实战学习(四十七)【PlayGround,TensorBoard】

PlayGround。http://playground.tensorflow.org 。教学目的简单神经网络在线演示、实验图形化平台。可视化神经网络训练过程。在浏览器训练神经网络。界面,数据(DATA)、特征(FEATURES)、神经网络隐藏层(HIDDEN LAYERS)、层中连接线、输出(OUTPUT)。 数据。二维平面,蓝色正值,黄色负值。数据形态,圆形、异或、高斯、螺旋。数据配置,调整...
阅读(27) 评论(0)

Tensorflow实战学习(四十六)【TensoFlow开发环境,Mac,Ubuntu,Linux,Windows,CPU版本】

下载TensorFlow https://github.com/tensorflow/tensorflow/tree/v1.1.0 。Tags选择版本,下载解压。 pip安装。pip,Python包管理工具,PyPI(Python Packet Index) https://pypi.python.org/pypi 。 Mac环境。 安装virtualenv。virtualenv,Pytho...
阅读(39) 评论(0)

Tensorflow实战学习(四十五)【人工智能,深度学习,TensorFlow,比赛,公司】

TF.Contrib,开源社区贡献,新功能,内外部测试,根据反馈意见改进性能,改善API友好度,API稳定后,移到TensorFlow核心模块。生产代码,以最新官方教程和API指南参考。 统计分布。TF.contrib.ditributions模块,Bernoulli、Beta、Binomial、Gamma、Ecponential、Normal、Poisson、Uniform等统计分布,统计研究...
阅读(42) 评论(0)

Tensorflow实战学习(四十四)【TF.Contrib组件,统计分布,Layer,性能分析器tfprof】

TF.Contrib,开源社区贡献,新功能,内外部测试,根据反馈意见改进性能,改善API友好度,API稳定后,移到TensorFlow核心模块。生产代码,以最新官方教程和API指南参考。 统计分布。TF.contrib.ditributions模块,Bernoulli、Beta、Binomial、Gamma、Ecponential、Normal、Poisson、Uniform等统计分布,统计研究...
阅读(29) 评论(0)

Tensorflow实战学习(四十三)【TF.Learn 机器学习Estimator,DataFrame,监督器Monitors】

线性、逻辑回归。input_fn()建立简单两个特征列数据,用特证列API建立特征列。特征列传入LinearClassifier建立逻辑回归分类器,fit()、evaluate()函数,get_variable_names()得到所有模型变量名称。可以使用自定义优化函数,tf.train.FtrlOptimizer(),可以任意改动传到LinearClassifier。 随机森林。包含多个决策树...
阅读(26) 评论(0)
222条 共12页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:1001111次
    • 积分:14728
    • 等级:
    • 排名:第898名
    • 原创:311篇
    • 转载:706篇
    • 译文:72篇
    • 评论:265条
    博客专栏
    文章分类
    打赏
    如果你觉得我的文章对您有用,请随意打赏。 微信 支付宝