1153 选择子序列

原创 2015年07月07日 19:00:46
长度为N的整数数组A,所有的数均不相同,假设下标从0开始。找到一个最长的数组B,B数组的长度为K,数值范围是0 - N - 1,记录的是A数组的下标。满足A[B[0]] > A[B[1]] > A[B[2]] >...A[B[K]],并且对任意连续的两项B[i]及B[i + 1],满足min(B[i],B[i + 1]) < j < max(B[i],B[i + 1]) 均有A[j] < A[B[i + 1]] ,求最大的K。例如:9, 10, 2, -1, 3, -5, 0, -3, 1, 12, 5, 8, -2, 6, 4。可以选出:12, 10, 3, 1, 0, -3。对应的下标为:9, 1, 4, 8, 6, 7(就是B数组),输出6。
Input
第1行:一个数N,表示A数组的长度。(1 <= N <= 50000)
第2 - N + 1行:每行1个数对应A数组的元素Ai(0 < Ai < 10^9)
Output
输出B数组最长的长度K。
Input示例
15
9
10
2
-1
3
-5
0
-3
1
12
5
8
-2
6
4
Output示例
6
解题思路:首先应该找出所有的i和j,满足题目中要求的条件,i->j连一条有向边,最终得到的图是一个DAG,瞬间变成了求DAG的最长路,采用记忆花搜索的方法,如何高效的建图是解决本题的关键,待我建完图才发现我建图的过程中其实维护的是一个单调递减的队列,囧~~~~~
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <climits>
#include <cassert>
#include <iostream>
#include <string>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <utility>
#include <numeric>
#include <algorithm>
#include <functional>
using namespace std;

typedef long long ll;
const int inf = 0x3f3f3f3f;
const ll  INF = 0x3f3f3f3f3f3f3f3fLL;
const double pi = acos(-1.0);
const double eps = 1e-6;
const int maxn = 50010;
int arr[maxn];
int dis[maxn];
vector<int> g[maxn];
deque<int> dq;

void init() {
    while(!dq.empty()) dq.pop_back();
    for(int i = 0; i < maxn; ++i) {
        g[i].clear();
    }
    memset(dis, -1, sizeof(dis));
}

int dfs(int u) {
    if(dis[u] > 0) return dis[u];
    int size = g[u].size();
    if(size == 0) return dis[u] = 1;
    int maxd = -1;
    for(int i = 0; i < size; ++i) {
        int v = g[u][i];
        maxd = max(maxd, dfs(v) + 1);
    }
    return dis[u] = maxd;
}

int main() {

    //freopen("aa.in", "r", stdin);

    int n;
    init();
    scanf("%d", &n);
    for(int i = 0; i < n; ++i) {
        scanf("%d", &arr[i]);
    }
    int id = 0;
    while(id < n) {
        if(dq.empty()) {
            dq.push_back(id);
        } else {
            if(arr[dq.back()] < arr[id]) {
                while(!dq.empty() && arr[dq.back()] < arr[id]) {
                    g[id].push_back(dq.back());
                    dq.pop_back();
                }
                if(!dq.empty()) {
                    g[dq.back()].push_back(id);
                }
                dq.push_back(id);
            } else {
                if(!dq.empty()) {
                    g[dq.back()].push_back(id);
                }
                dq.push_back(id);
            }
        }
        ++id;
    }
    int ans = 0;
    for(int i = 0; i < n; ++i) {
        if(dis[i] == -1) {
            dfs(i);
        }
        ans = max(ans, dis[i]);
    }
    printf("%d\n", ans);
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

51NOD1153 选择子序列 【分治法+RMQ水一发】

1153 选择子序列 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 长度为N的整数数组A,所有的数均不相同,假设下标从...

51Nod-1153-选择子序列

ACM模版描述题解一开始想着有O(N)的解法,可是苦思冥想没能想出来,很尴尬…… 最后用排序递归解了,然后又学习了大牛们的高校O(N)解法。这道题的大致意思还真不好讲,我们可以通过样例来理解这道题:...
  • f_zyj
  • f_zyj
  • 2016-08-25 03:33
  • 426

选择子序列

长度为N的整数数组A,所有的数均不相同,假设下标从0开始。找到一个最长的数组B,B数组的长度为K,数值范围是0 - N - 1,记录的是A数组的下标。满足A[B[0]] > A[B[1]] > A[B...

最长公共子序列

LIS最长单调递增子序列

  • 2014-05-18 16:23
  • 930B
  • 下载

动态规划----最长公共子序列LCS

1、基本概念   一个给定序列的子序列就是该给定序列中去掉零个或者多个元素的序列。形式化来讲就是:给定一个序列X={x1,x2,……,xm},另外一个序列Z={z1、z2、……,zk},如果存在...

最长公共子序列

  • 2014-06-26 10:46
  • 695B
  • 下载

最长公共子序列

  • 2014-03-15 18:49
  • 916B
  • 下载

求所有最大公共子序列的算法实现(转)

最近看了很多关于LCS(Longest common subsequence problem,最长公共子序列)的文章,大部分问题都只是求出最大公共子序列的长度,或者打印处其中的任意一个最大子序列即可,...

公共子序列

  • 2014-06-18 16:37
  • 204KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)