关闭

1153 选择子序列

292人阅读 评论(0) 收藏 举报
分类:
长度为N的整数数组A,所有的数均不相同,假设下标从0开始。找到一个最长的数组B,B数组的长度为K,数值范围是0 - N - 1,记录的是A数组的下标。满足A[B[0]] > A[B[1]] > A[B[2]] >...A[B[K]],并且对任意连续的两项B[i]及B[i + 1],满足min(B[i],B[i + 1]) < j < max(B[i],B[i + 1]) 均有A[j] < A[B[i + 1]] ,求最大的K。例如:9, 10, 2, -1, 3, -5, 0, -3, 1, 12, 5, 8, -2, 6, 4。可以选出:12, 10, 3, 1, 0, -3。对应的下标为:9, 1, 4, 8, 6, 7(就是B数组),输出6。
Input
第1行:一个数N,表示A数组的长度。(1 <= N <= 50000)
第2 - N + 1行:每行1个数对应A数组的元素Ai(0 < Ai < 10^9)
Output
输出B数组最长的长度K。
Input示例
15
9
10
2
-1
3
-5
0
-3
1
12
5
8
-2
6
4
Output示例
6
解题思路:首先应该找出所有的i和j,满足题目中要求的条件,i->j连一条有向边,最终得到的图是一个DAG,瞬间变成了求DAG的最长路,采用记忆花搜索的方法,如何高效的建图是解决本题的关键,待我建完图才发现我建图的过程中其实维护的是一个单调递减的队列,囧~~~~~
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <climits>
#include <cassert>
#include <iostream>
#include <string>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <utility>
#include <numeric>
#include <algorithm>
#include <functional>
using namespace std;

typedef long long ll;
const int inf = 0x3f3f3f3f;
const ll  INF = 0x3f3f3f3f3f3f3f3fLL;
const double pi = acos(-1.0);
const double eps = 1e-6;
const int maxn = 50010;
int arr[maxn];
int dis[maxn];
vector<int> g[maxn];
deque<int> dq;

void init() {
    while(!dq.empty()) dq.pop_back();
    for(int i = 0; i < maxn; ++i) {
        g[i].clear();
    }
    memset(dis, -1, sizeof(dis));
}

int dfs(int u) {
    if(dis[u] > 0) return dis[u];
    int size = g[u].size();
    if(size == 0) return dis[u] = 1;
    int maxd = -1;
    for(int i = 0; i < size; ++i) {
        int v = g[u][i];
        maxd = max(maxd, dfs(v) + 1);
    }
    return dis[u] = maxd;
}

int main() {

    //freopen("aa.in", "r", stdin);

    int n;
    init();
    scanf("%d", &n);
    for(int i = 0; i < n; ++i) {
        scanf("%d", &arr[i]);
    }
    int id = 0;
    while(id < n) {
        if(dq.empty()) {
            dq.push_back(id);
        } else {
            if(arr[dq.back()] < arr[id]) {
                while(!dq.empty() && arr[dq.back()] < arr[id]) {
                    g[id].push_back(dq.back());
                    dq.pop_back();
                }
                if(!dq.empty()) {
                    g[dq.back()].push_back(id);
                }
                dq.push_back(id);
            } else {
                if(!dq.empty()) {
                    g[dq.back()].push_back(id);
                }
                dq.push_back(id);
            }
        }
        ++id;
    }
    int ans = 0;
    for(int i = 0; i < n; ++i) {
        if(dis[i] == -1) {
            dfs(i);
        }
        ans = max(ans, dis[i]);
    }
    printf("%d\n", ans);
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:71966次
    • 积分:2932
    • 等级:
    • 排名:第12029名
    • 原创:230篇
    • 转载:11篇
    • 译文:0篇
    • 评论:3条
    文章分类
    最新评论