1153 选择子序列

原创 2015年07月07日 19:00:46
长度为N的整数数组A,所有的数均不相同,假设下标从0开始。找到一个最长的数组B,B数组的长度为K,数值范围是0 - N - 1,记录的是A数组的下标。满足A[B[0]] > A[B[1]] > A[B[2]] >...A[B[K]],并且对任意连续的两项B[i]及B[i + 1],满足min(B[i],B[i + 1]) < j < max(B[i],B[i + 1]) 均有A[j] < A[B[i + 1]] ,求最大的K。例如:9, 10, 2, -1, 3, -5, 0, -3, 1, 12, 5, 8, -2, 6, 4。可以选出:12, 10, 3, 1, 0, -3。对应的下标为:9, 1, 4, 8, 6, 7(就是B数组),输出6。
Input
第1行:一个数N,表示A数组的长度。(1 <= N <= 50000)
第2 - N + 1行:每行1个数对应A数组的元素Ai(0 < Ai < 10^9)
Output
输出B数组最长的长度K。
Input示例
15
9
10
2
-1
3
-5
0
-3
1
12
5
8
-2
6
4
Output示例
6
解题思路:首先应该找出所有的i和j,满足题目中要求的条件,i->j连一条有向边,最终得到的图是一个DAG,瞬间变成了求DAG的最长路,采用记忆花搜索的方法,如何高效的建图是解决本题的关键,待我建完图才发现我建图的过程中其实维护的是一个单调递减的队列,囧~~~~~
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <climits>
#include <cassert>
#include <iostream>
#include <string>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <utility>
#include <numeric>
#include <algorithm>
#include <functional>
using namespace std;

typedef long long ll;
const int inf = 0x3f3f3f3f;
const ll  INF = 0x3f3f3f3f3f3f3f3fLL;
const double pi = acos(-1.0);
const double eps = 1e-6;
const int maxn = 50010;
int arr[maxn];
int dis[maxn];
vector<int> g[maxn];
deque<int> dq;

void init() {
    while(!dq.empty()) dq.pop_back();
    for(int i = 0; i < maxn; ++i) {
        g[i].clear();
    }
    memset(dis, -1, sizeof(dis));
}

int dfs(int u) {
    if(dis[u] > 0) return dis[u];
    int size = g[u].size();
    if(size == 0) return dis[u] = 1;
    int maxd = -1;
    for(int i = 0; i < size; ++i) {
        int v = g[u][i];
        maxd = max(maxd, dfs(v) + 1);
    }
    return dis[u] = maxd;
}

int main() {

    //freopen("aa.in", "r", stdin);

    int n;
    init();
    scanf("%d", &n);
    for(int i = 0; i < n; ++i) {
        scanf("%d", &arr[i]);
    }
    int id = 0;
    while(id < n) {
        if(dq.empty()) {
            dq.push_back(id);
        } else {
            if(arr[dq.back()] < arr[id]) {
                while(!dq.empty() && arr[dq.back()] < arr[id]) {
                    g[id].push_back(dq.back());
                    dq.pop_back();
                }
                if(!dq.empty()) {
                    g[dq.back()].push_back(id);
                }
                dq.push_back(id);
            } else {
                if(!dq.empty()) {
                    g[dq.back()].push_back(id);
                }
                dq.push_back(id);
            }
        }
        ++id;
    }
    int ans = 0;
    for(int i = 0; i < n; ++i) {
        if(dis[i] == -1) {
            dfs(i);
        }
        ans = max(ans, dis[i]);
    }
    printf("%d\n", ans);
    return 0;
}


51Nod-1153-选择子序列

ACM模版描述题解一开始想着有O(N)的解法,可是苦思冥想没能想出来,很尴尬…… 最后用排序递归解了,然后又学习了大牛们的高校O(N)解法。这道题的大致意思还真不好讲,我们可以通过样例来理解这道题:...
  • f_zyj
  • f_zyj
  • 2016年08月25日 03:33
  • 468

51nod 1153 选择子序列

#include using namespace std; const int MAXN=50050; int a[MAXN],dis[MAXN]; vector g[MAXN]; int df...
  • xin_jun
  • xin_jun
  • 2016年11月17日 01:00
  • 118

51NOD1153 选择子序列 【分治法+RMQ水一发】

1153 选择子序列 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 长度为N的整数数组A,所有的数均不相同,假设下标从...

51nod 1153 选择子序列 (好题)

这个题很不错。 采用贪心的思想:首先考虑到在整个序列中取最大值一定是最优的,也就是说B数组的第一个数是A数组的中最大值的下标。而且通过题意我们发现,一旦选定了某个数就把当前的区间划分成两份。比如说第...

1153: 简易版最长序列

1153: 简易版最长序列 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 1820  Solved: 613 SubmitStatusWeb...
  • sd_DENG
  • sd_DENG
  • 2017年07月13日 18:40
  • 94

选择子序列

长度为N的整数数组A,所有的数均不相同,假设下标从0开始。找到一个最长的数组B,B数组的长度为K,数值范围是0 - N - 1,记录的是A数组的下标。满足A[B[0]] > A[B[1]] > A[B...

最大子序列和问题四种算法源代码

  • 2017年03月10日 10:04
  • 1.64MB
  • 下载

Maximum Subarray连续子序列最大和 -- LeetCode(经典动态规划)

原题链接: http://oj.leetcode.com/problems/maximum-subarray/  这是一道非常经典的动态规划的题目,用到的思路我们在别的动态规划题目中也很常用,以后我们...

LCS最长公共子序列

  • 2016年09月07日 18:27
  • 895B
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:1153 选择子序列
举报原因:
原因补充:

(最多只允许输入30个字)