八叉树算法的改进

1、八叉树的定义（熟悉的直接跳到第二步）

2、分析
(1)

struct OctTreeNode{
LHLONG tag;//对于叶节点，为统计的颜色数；对于非叶节点，恒为-1。
struct OctTreeNode *pChild[8];//下一级节点
};

//创建八叉树
int depth = 6;
OctTreeNode *pRootNode = NULL;
m_depth = depth;
m_nodeNum = 1;
for(LHINT i=1; i<=m_depth; i++){
m_nodeNum += (1 << ((i << 2) - i));
}

pRootNode = (OctTreeNode *)LHMalloc((m_nodeNum << 5) + (m_nodeNum << 2));//OctTreeNode的大小为36字节，分解为32（2的5次方）+ 4（2的平方）
if(pRootNode == NULL){
goto initialize_octTree_fail;
}
memset(pRootNode, 0, sizeof(OctTreeNode));
pRootNode->tag = -1;
ret = createOctTree(1, pRootNode);

//递归函数
int createOctTree(int  depth, OctTreeNode *pParent){

static LHDWORD _nodeIndex = 1;
if(depth < (m_depth)){
for(int  i=0; i<8; i++){
pParent->pChild[i] = &pRootNode[_nodeIndex];
memset(pParent->pChild[i], 0, sizeof(OctTreeNode));
pParent->pChild[i]->tag = -1;

_nodeIndex ++;
createOctTree(depth + 1, pParent->pChild[i]);
}
}else{
for(int  i=0; i<8; i++){
pParent->pChild[i] = &pRootNode[_nodeIndex];
memset(pParent->pChild[i], 0, sizeof(OctTreeNode));

_nodeIndex ++;
}
if(_nodeIndex >= m_nodeNum){
_nodeIndex = 1;
}
}
return 0;
}

(2) 运行上面的程序，你将会发现你的内存狂涨！！！

struct _node{
DWORD num;
};

void Test()
{
DWORD r = 0;
DWORD g = 0;
DWORD b = 0;
DWORD ret = 0;

DWORD size = 400000;
_node *pList = (_node *)malloc(size * sizeof(_node));//这个就是简化之后的八叉树！！！
memset(pList, 0, size * sizeof(_node));

FILE *fd = fopen("data.dat", "wb");
char info[128] = {0};

BYTE depth = 6;
for(r=0; r<256; r++){
for(g=0; g<256; g++){
for(b=0; b<256; b++){
ret = (((r >> (8 - depth)) << (depth << 1)) | ((g >> (8 - depth)) << depth) | (b >> (8 - depth)));
pList[ret].num ++;
}
}
}

for(DWORD i=0; i<size; i++){
if(pList[i].num != 0){
sprintf(info, "%08lu      %lu\n", i, pList[i]);
fwrite(info, 1, strlen(info), fd);
}else{
break;
}
}

fclose(fd);
free(pList);
}

00000000      64
00000001      64
00000002      64
00000003      64
00000004      64
00000005      64
00000006      64
00000007      64
00000008      64
00000009      64
00000010      64
00000011      64
00000012      64
。。。。

。。。。
00130949      64
00130950      64
00130951      64
00130952      64
00130953      64
00130954      64
00130955      64
00130956      64
00130957      64
00130958      64
00130959      64
。。。。
。。。。

00262131      64
00262132      64
00262133      64
00262134      64
00262135      64
00262136      64
00262137      64
00262138      64
00262139      64
00262140      64
00262141      64
00262142      64
00262143      64

• 本文已收录于以下专栏：

八叉树算法

Octree的定义是：若不为空树的话，树中任一节点的子节点恰好只会有八个，或 零个，也就是子节点不会有0与8以外的数目。那么，这要用来做什么？想象一个 立方体，我们最少可以切成多少个相同等分的小立...
• damenhanter
• 2013年10月20日 22:54
• 1592

用于将真彩色图像降级为索引图像的八叉树算法

• Augusdi
• 2014年07月01日 10:42
• 1967

基于八叉树的拾取算法在游戏中的应用

• pizi0475
• 2015年04月16日 10:24
• 1393

使用八叉树将真彩色颜色进行量化

• yaopengpeng
• 2013年04月27日 19:06
• 670

八叉树 C++ 基础 源码

http://blog.csdn.net/pizi0475/article/details/6269060四叉树或四元树也被称为Q树（Q-Tree）。四叉树广泛应用于图像处理、空间数据索引、2D中的快...
• yulinxx
• 2017年06月20日 23:28
• 1203

场景管理：八叉树算法C++实现

• u012234115
• 2015年07月30日 21:06
• 2941

基于八叉树的区域增长点云分割算法

• cjx2lxj
• 2016年01月16日 20:41
• 5433

八叉树场景管理

• Augusdi
• 2014年07月01日 10:20
• 1956

八叉树Octree

• Augusdi
• 2014年06月30日 16:41
• 12778

KNN及其改进算法的python实现

• HUSTLX
• 2016年03月10日 21:07
• 1714

举报原因： 您举报文章：八叉树算法的改进 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)