八叉树算法的改进

原创 2013年12月06日 10:39:17
1、八叉树的定义(熟悉的直接跳到第二步)
 
你有一个立方体,按照如下方法给它三刀:

横切一刀,竖劈一刀,在与之前竖劈方向垂直的方向再砍一刀,这样就分成八个大小相同的立方体;

对小立方体重复砍劈。。。。。

2、分析
(1) 
构建规则的八叉树 
如果构建规则的八叉树 ,则结构所占的空间将非常大,而且很多情况下这些结构都是无用的;
常规构建方法:
struct OctTreeNode{
    LHLONG tag;//对于叶节点,为统计的颜色数;对于非叶节点,恒为-1。
    struct OctTreeNode *pChild[8];//下一级节点
};

 //创建八叉树
int depth = 6; 
OctTreeNode *pRootNode = NULL;
m_depth = depth;
m_nodeNum = 1;
for(LHINT i=1; i<=m_depth; i++){
    m_nodeNum += (1 << ((i << 2) - i));
}

pRootNode = (OctTreeNode *)LHMalloc((m_nodeNum << 5) + (m_nodeNum << 2));//OctTreeNode的大小为36字节,分解为32(2的5次方)+ 4(2的平方)
if(pRootNode == NULL){
    goto initialize_octTree_fail;
}
memset(pRootNode, 0, sizeof(OctTreeNode));
pRootNode->tag = -1;
ret = createOctTree(1, pRootNode);


//递归函数
int createOctTree(int  depth, OctTreeNode *pParent){

    static LHDWORD _nodeIndex = 1;
    if(depth < (m_depth)){
        for(int  i=0; i<8; i++){
            pParent->pChild[i] = &pRootNode[_nodeIndex];
            memset(pParent->pChild[i], 0, sizeof(OctTreeNode));
            pParent->pChild[i]->tag = -1;

            _nodeIndex ++;
            createOctTree(depth + 1, pParent->pChild[i]);
        }
    }else{
        for(int  i=0; i<8; i++){
            pParent->pChild[i] = &pRootNode[_nodeIndex];
            memset(pParent->pChild[i], 0, sizeof(OctTreeNode));

            _nodeIndex ++;
        }
        if(_nodeIndex >= m_nodeNum){
            _nodeIndex = 1;
        }
    }
    return 0;
} 

(2) 运行上面的程序,你将会发现你的内存狂涨!!!
解决办法:优化。
只使用叶节点,其余的都丢弃!
struct _node{
DWORD num;
};

void Test()
{
DWORD r = 0;
DWORD g = 0;
DWORD b = 0;
DWORD ret = 0;

DWORD size = 400000;
_node *pList = (_node *)malloc(size * sizeof(_node));//这个就是简化之后的八叉树!!!
memset(pList, 0, size * sizeof(_node));

FILE *fd = fopen("data.dat", "wb");
char info[128] = {0};

BYTE depth = 6;
for(r=0; r<256; r++){
for(g=0; g<256; g++){
for(b=0; b<256; b++){
ret = (((r >> (8 - depth)) << (depth << 1)) | ((g >> (8 - depth)) << depth) | (b >> (8 - depth)));
pList[ret].num ++;
}
}
}

for(DWORD i=0; i<size; i++){
if(pList[i].num != 0){
sprintf(info, "%08lu      %lu\n", i, pList[i]);
fwrite(info, 1, strlen(info), fd);
}else{
break;
}
}

fclose(fd);
free(pList);
}  
记录的文件如下:
00000000      64
00000001      64
00000002      64
00000003      64
00000004      64
00000005      64
00000006      64
00000007      64
00000008      64
00000009      64
00000010      64
00000011      64
00000012      64
。。。。 
 
。。。。 
00130949      64
00130950      64
00130951      64
00130952      64
00130953      64
00130954      64
00130955      64
00130956      64
00130957      64
00130958      64
00130959      64 
。。。。  
。。。。 
 
00262131      64
00262132      64
00262133      64
00262134      64
00262135      64
00262136      64
00262137      64
00262138      64
00262139      64
00262140      64
00262141      64
00262142      64
00262143      64
设置的是六级的深度,一共是262144条数据,占用内存为1M!而
构建规则的六级深度的八叉树,一共有299592个节点(不算根节点,只算子节点和叶节点),按照每个叶节点占用32字节,结构内存将达到9.142822265625M,难以接受!
 
至于查找、修改等操作,上面的代码演示的很清楚了。
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

基于八叉树的网格生成算法剖析

基于八叉树的网格生成算法剖析 前言   对于网格生成这个主题,之前的网格生成系列的三篇博客文章分别介绍了MC算法,SMC算法以及Cuberille算法三种方法。同时还有一篇介绍网格生成...

八叉树算法

  • 2015-10-08 16:28
  • 2.94MB
  • 下载

场景管理:八叉树算法C++实现

简单实现了场景管理八叉树算法 代码结构: object.h,object.cpp 被管理的对象类octree_node.h,octree_node.cpp 八叉树类main.cpp程序入口...

基于八叉树的区域增长点云分割算法

提出的问题 相关工作 提出的方案 粗分割 细化 达到的效果 认为的优点 可能的改进 提出的问题 激光雷达探测到城市环境的物体表面构成三维几何点,相应的点云分割技术常用于建筑物重建。由于建筑物的复...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)