八叉树算法的改进

原创 2013年12月06日 10:39:17
1、八叉树的定义(熟悉的直接跳到第二步)
 
你有一个立方体,按照如下方法给它三刀:

横切一刀,竖劈一刀,在与之前竖劈方向垂直的方向再砍一刀,这样就分成八个大小相同的立方体;

对小立方体重复砍劈。。。。。

2、分析
(1) 
构建规则的八叉树 
如果构建规则的八叉树 ,则结构所占的空间将非常大,而且很多情况下这些结构都是无用的;
常规构建方法:
struct OctTreeNode{
    LHLONG tag;//对于叶节点,为统计的颜色数;对于非叶节点,恒为-1。
    struct OctTreeNode *pChild[8];//下一级节点
};

 //创建八叉树
int depth = 6; 
OctTreeNode *pRootNode = NULL;
m_depth = depth;
m_nodeNum = 1;
for(LHINT i=1; i<=m_depth; i++){
    m_nodeNum += (1 << ((i << 2) - i));
}

pRootNode = (OctTreeNode *)LHMalloc((m_nodeNum << 5) + (m_nodeNum << 2));//OctTreeNode的大小为36字节,分解为32(2的5次方)+ 4(2的平方)
if(pRootNode == NULL){
    goto initialize_octTree_fail;
}
memset(pRootNode, 0, sizeof(OctTreeNode));
pRootNode->tag = -1;
ret = createOctTree(1, pRootNode);


//递归函数
int createOctTree(int  depth, OctTreeNode *pParent){

    static LHDWORD _nodeIndex = 1;
    if(depth < (m_depth)){
        for(int  i=0; i<8; i++){
            pParent->pChild[i] = &pRootNode[_nodeIndex];
            memset(pParent->pChild[i], 0, sizeof(OctTreeNode));
            pParent->pChild[i]->tag = -1;

            _nodeIndex ++;
            createOctTree(depth + 1, pParent->pChild[i]);
        }
    }else{
        for(int  i=0; i<8; i++){
            pParent->pChild[i] = &pRootNode[_nodeIndex];
            memset(pParent->pChild[i], 0, sizeof(OctTreeNode));

            _nodeIndex ++;
        }
        if(_nodeIndex >= m_nodeNum){
            _nodeIndex = 1;
        }
    }
    return 0;
} 

(2) 运行上面的程序,你将会发现你的内存狂涨!!!
解决办法:优化。
只使用叶节点,其余的都丢弃!
struct _node{
DWORD num;
};

void Test()
{
DWORD r = 0;
DWORD g = 0;
DWORD b = 0;
DWORD ret = 0;

DWORD size = 400000;
_node *pList = (_node *)malloc(size * sizeof(_node));//这个就是简化之后的八叉树!!!
memset(pList, 0, size * sizeof(_node));

FILE *fd = fopen("data.dat", "wb");
char info[128] = {0};

BYTE depth = 6;
for(r=0; r<256; r++){
for(g=0; g<256; g++){
for(b=0; b<256; b++){
ret = (((r >> (8 - depth)) << (depth << 1)) | ((g >> (8 - depth)) << depth) | (b >> (8 - depth)));
pList[ret].num ++;
}
}
}

for(DWORD i=0; i<size; i++){
if(pList[i].num != 0){
sprintf(info, "%08lu      %lu\n", i, pList[i]);
fwrite(info, 1, strlen(info), fd);
}else{
break;
}
}

fclose(fd);
free(pList);
}  
记录的文件如下:
00000000      64
00000001      64
00000002      64
00000003      64
00000004      64
00000005      64
00000006      64
00000007      64
00000008      64
00000009      64
00000010      64
00000011      64
00000012      64
。。。。 
 
。。。。 
00130949      64
00130950      64
00130951      64
00130952      64
00130953      64
00130954      64
00130955      64
00130956      64
00130957      64
00130958      64
00130959      64 
。。。。  
。。。。 
 
00262131      64
00262132      64
00262133      64
00262134      64
00262135      64
00262136      64
00262137      64
00262138      64
00262139      64
00262140      64
00262141      64
00262142      64
00262143      64
设置的是六级的深度,一共是262144条数据,占用内存为1M!而
构建规则的六级深度的八叉树,一共有299592个节点(不算根节点,只算子节点和叶节点),按照每个叶节点占用32字节,结构内存将达到9.142822265625M,难以接受!
 
至于查找、修改等操作,上面的代码演示的很清楚了。

基于八叉树的网格简化算法实现

  • 2015年01月23日 15:03
  • 3.24MB
  • 下载

基于八叉树的网格生成算法剖析

基于八叉树的网格生成算法剖析 前言   对于网格生成这个主题,之前的网格生成系列的三篇博客文章分别介绍了MC算法,SMC算法以及Cuberille算法三种方法。同时还有一篇介绍网格生成...

八叉树算法

  • 2015年10月08日 16:28
  • 2.94MB
  • 下载

基于八叉树的网格生成算法剖析

前言   对于网格生成这个主题,之前的网格生成系列的三篇博客文章分别介绍了MC算法,SMC算法以及Cuberille算法三种方法。同时还有一篇介绍网格生成与种子点生长算法高效结合的算法。本篇文章...

支持任意类型值的八叉树算法

  • 2010年05月31日 10:40
  • 27KB
  • 下载

基于八叉树的拾取算法在游戏中的应用

时间: 2014-02-12 来源:论文在线   摘  要:八叉树结构在游戏的场景渲染中应用十分广泛,本文针对该结构大幅度优化运算效率的特点,将其作了适当改进,使...

基于八叉树的网格生成算法剖析

前言   对于网格生成这个主题,之前的网格生成系列的三篇博客文章分别介绍了MC算法,SMC算法以及Cuberille算法三种方法。同时还有一篇介绍网格生成与种子点生长算法高效结合的算法。本篇文章...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:八叉树算法的改进
举报原因:
原因补充:

(最多只允许输入30个字)