关闭
当前搜索:

[置顶] 信息学比赛经验错误总结(实时更新)

#**比赛经验总结** **1.**数组上下标要多开几维以防爆数组。 **2.**数据类型要注意,大多时候需要开long long。 **3.**做题不能太大胆,想到什么就认为正解是什么;同样的,也不能太保守,无论想到什么都否定算法的正确性。 **4.**打对拍时,特别要注意对拍与程序共用的部分,共用的部分一旦打错,即使程序是错的也检验不出来。 **5.**某些运行时错误在编译器内运行是不会被显示出来的。(这个特别坑...
阅读(2783) 评论(0)

[置顶] LaTex 符号大全

LaTex符号大全...
阅读(4111) 评论(0)

AtCoder Grand Contest 019 F Yes or No

Yes or NoDescription有nn+mm个问题,其中nn个问题的答案为YesYes,mm个问题的答案为NoNo,现在题目以某种顺序依次给出,每次需要回答YesYes或NoNo,在回答完一个问题后你可以马上知道这个问题的正确答案,问期望最多能答对多少题。Data Constraintn,mn,m=mm。 可以把答案看成一条由(00,00)走到(n...
阅读(19) 评论(0)

JZOJ 5521 Try to find out the wrong in the test

Try to find out the wrong in the testDescription给出一个序列,第ii个序列有两个关键值cic_i和did_i。 接下来要求把序列分成若干段,保证对于每个位置ii所属的段的长度LeniLen_i,满足cic_i<=LeniLen_i<=did_i,求最多能分得的段数以及在段数最多的情况下分段的方案数。Data Constraintnn<=10610^6...
阅读(33) 评论(0)

JZOJ 5539 psy

psy Description f(i)=i&#x2217;[&#x2211;d|n10d&#x2217;&#x03BC;(id)]" role="presentation" style="position: relative;">f(i)=i∗[∑d|n10d∗μ(id)]f(i)=i∗[∑d|n10d∗μ(id)]f(i)=i*[\sum_{d|n}10^d*\mu({i \over...
阅读(74) 评论(0)

多项式取模及其应用

前置知识 多项式求逆。 多项式取模 问题描述 求A(x)A(x) modmod B(x)B(x),其中degAdegA>=degBdegB Solution 令A(x)=B(x)C(x)+D(x)A(x)=B(x)C(x)+D(x),其中degDdegDdegBdegB 设degAdegA=nn,degBdegB=mm,则degDdegD m m,degCdegCnn-m...
阅读(92) 评论(0)

JZOJ 4330 几何题

几何题Description给出nn个三维空间内的点,第ii个点的坐标是(xix_i,yiy_i,ziz_i),现在有qq组询问,每次询问给出44个数aa,bb,cc,dd,对于每次询问,求出 ∑i≠j|a(xi−xj)+b(yi−yj)+c(zi−zj)+d|n(n−1)(xi−xj)4+(yi−yj)4+(zi−zj)4−−−−−−−−−−−−−−−−−−−−−−−−−−√\sum_{i≠j}...
阅读(88) 评论(0)

JZOJ 5527 Silly

SillyDescriptionData ConstraintN<=1018N<=10^{18},K<=109K<=10^9,Mo<=1018Mo<=10^{18}且Mo≠2Mo≠2且MoMo为质数Solution原式等于Answer=∑d|nφ(d)K∗{∑i=1ndi∗n∗[(i,n)=1]}Answer=\sum_{d|n}\varphi(d)^K*\{\sum_{i=1}^{n\over d...
阅读(79) 评论(0)

Dirichlet卷积 学习小记

定义定义数论函数ff和gg的狄利克雷卷积为hh,则h(n)=∑d|nf(d)∗g(nd)h(n)=\sum_{d|n}f(d)*g({n\over d}),记作h=f∗gh=f*g。一些性质DirichletDirichlet卷积满足交换律,结合律,对加法满足分配律 两个积性函数的狄利克雷卷积依旧为积性函数。(证明比较显然,这就不写了)一些常见的数论函数1(i)=1,n(i)=i1(i)=1,n(...
阅读(79) 评论(0)

JZOJ 5516 Function

Function Description σ0(n)σ_0(n)=∑d|n1\sum_{d|n}1 求 ∑i=1n∑d|iμ(d)σ0(id)σ0(id)\sum_{i=1}^n\sum_{d|i}\mu (d)\sigma_0({i\over d})\sigma_0({i\over d}) Data Constraint nn10910^9 Solution σ0(n...
阅读(62) 评论(0)

JZOJ 5508 距离

Description在一个kk维空间内,定义一个点的切比雪夫距离为 求在kk维空间内到原点的切比雪夫距离不超过nn的所有点的到原点的切比雪夫距离之和。Data Constraintkk<=10610^6,NN<=10910^9Code枚举jj表示有jj维到原点的距离不为00,则这jj维的符号可正可负,接着再枚举切比雪夫距离ii, 通过简单的容斥可得方案数为2j2^j(iji^j-(i−1)j(...
阅读(64) 评论(0)

JZOJ 3492 数数

Description给出如下形式的等差数列: B+A,B+2A,B+3A,...,B+NAB+A , B+2A , B+3A , ... , B+NA 求每一项化成二进制后,一共有多少位11。Data Constraint11<=AA<=1000010000 , 11<=BB<=101610^{16} , 11<=NN<=101210^{12}Solution拆位考虑答案贡献。 考虑第ii位...
阅读(54) 评论(0)
163条 共17页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:278886次
    • 积分:4222
    • 等级:
    • 排名:第8599名
    • 原创:162篇
    • 转载:1篇
    • 译文:0篇
    • 评论:32条
    博客公告

    Swimming in the
    Sea of Questions
    ~~O(∩_∩)O~~

    文章分类