关闭

快速傅立叶变换程序与反变换程序

标签: math.hdeleteinifft
4309人阅读 评论(3) 收藏 举报
分类:
///////////////快速傅立叶变换程序/////////////////////
#include "stdafx.h"
#include <math.h>
#define pi 3.14159265359
#define M  8
////////////////取反函数//////////////////////////
int rebit(int num,int p)
{
 int i,rb=0,rb1,k,num1=num;
 for(i=1;i<=p;i++)
 {
  k=num&1;
  num=num1>>1;
  num1=num;
  rb=rb+k;
  rb1=rb<<1;
  rb=rb1;
 }
 return rb>>1;
}
///////////////2的次方函数/////////////////////
inline int pow2(int n)
{
 return 1<<n;
}
///////////////快速傅立叶变换/////////////////////
/*
ir---输入实部指针
ii---输入虚部指针
or---输出实部指针
oi---输出虚部指针
l----数组长度=2的l次方
*/
void FFT(double *ir,double *ii,double or[],double oi[],int l)
{
 int i,j,r,s,N,s0,m;
    double *kr,*ki,u,v,cc,cs,t;
 N=pow2(l);
 kr=new double[N];
 ki=new double[N];
 for(i=0;i<N;i++)
 {
  kr[i]=ir[rebit(i,l)];
        ki[i]=ii[rebit(i,l)];
 }
 for(i=1;i<=l;i++)
 {
  m=pow2(i);
  for(j=0;j<pow2(l-i);j++)
  {
   for(r=0;r<pow2(i-1);r++)
   {
    s=j*pow2(i)+r;
    s0=s+pow2(i-1);
    t=2*pi*r/m;
    cc=cos(t);
    cs=sin(t);
                u=kr[s0]*cc+ki[s0]*cs;
    v=ki[s0]*cc-kr[s0]*cs;
                kr[s0]=kr[s]-u;
    ki[s0]=ki[s]-v;
                kr[s]=kr[s]+u;
    ki[s]=ki[s]+v;
   }
  }
 }
    for(i=0;i<N;i++)
 {
  or[i]=kr[i];
        oi[i]=ki[i];
 }
 delete []kr;
    delete []ki;
}

///////////////快速傅立叶反变换程序/////////////////////
#include "stdafx.h"
#include <math.h>
#define pi 3.14159265359
#define M  8
////////////////取反函数//////////////////////////
int rebit(int num,int p)
{
 int i,rb=0,rb1,k,num1=num;
 for(i=1;i<=p;i++)
 {
  k=num&1;
  num=num1>>1;
  num1=num;
  rb=rb+k;
  rb1=rb<<1;
  rb=rb1;
 }
 return rb>>1;
}
///////////////2的次方函数/////////////////////
inline int pow2(int n)
{
 return 1<<n;
}
 
///////////////快速傅立叶反变换/////////////////////
/*
ir---输入实部指针
ii---输入虚部指针
or---输出实部指针
oi---输出虚部指针
l----数组长度=2的l次方
*/
void RFFT(double *ir,double *ii,double or[],double oi[],int l)
{
 int i,j,r,s,N,s0,m;
    double *kr,*ki,u,v,cc,cs,t;
 N=pow2(l);
 kr=new double[N];
 ki=new double[N];
 for(i=0;i<N;i++)
 {
  kr[i]=ir[rebit(i,l)];
        ki[i]=ii[rebit(i,l)];
 }
 for(i=1;i<=l;i++)
 {
  m=pow2(i);
  for(j=0;j<pow2(l-i);j++)
  {
   for(r=0;r<pow2(i-1);r++)
   {
    s=j*pow2(i)+r;
    s0=s+pow2(i-1);
    t=2*pi*r/m;
    cc=cos(-t);
    cs=sin(-t);
                u=kr[s0]*cc+ki[s0]*cs;
    v=ki[s0]*cc-kr[s0]*cs;
                kr[s0]=kr[s]-u;
    ki[s0]=ki[s]-v;
                kr[s]=kr[s]+u;
    ki[s]=ki[s]+v;
   }
  }
 }
    for(i=0;i<N;i++)
 {
  or[i]=kr[i]/N;
        oi[i]=ki[i]/N;
 }
 delete []kr;
    delete []ki;
}
/////////////////////////////////////////
int main(int argc, char* argv[])
{
 double f1[M],f2[M],g1[M],g2[M];
 int i;
 for(i=0;i<M;i++)
 {
        f1[i]=i;
       f2[i]=0;
 }
  RFFT(f1,f2,g1,g2,3);
 for(i=0;i<M;i++)
 {
        printf("%f+(%f)i/n",g1[i],g2[i]);
 }
 return 0;
}
 
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:333520次
    • 积分:3983
    • 等级:
    • 排名:第8166名
    • 原创:64篇
    • 转载:67篇
    • 译文:2篇
    • 评论:114条
    最新评论
    Opengl网站
    其它
    优秀编程网址