8大排序之 ---------归并排序 与时间复杂度

原创 2016年08月29日 15:02:29

                                            归并排序与时间复杂度

--------------------------

讲归并排序之前,先讲讲什么事递归?递归就是自己调用自己。

比如 f(x)=  x^2+ f(x - 1)且f(0)=0;

这个就是递归,比如你要求f(5)就必须先求出f(4)又得求出f(3)不断的递归下去直到f(0),这里要是没有f(0)=0,那么它就会一直递归下去直到负无穷。这是不允许的,所以f(0)=0是递归的基准情形。

递归的基本法则:(1)必须有基准情形

(2)不断推进 每一次递归都必须向基准情形推进

--------------------------------



(一)什么是归并排序?归并排序就是就是把待排序的数据分成几个子序列,对子序列进行排序后,把有序的子序列合并成整体有序的序列。

(二)递归排序的基本过程:比如现在要排序int a[] = {72,6,57,88,60,42,83,73,48,85};

           那么首先把数组分成两个子序列a1[]= {72,6,57,88,60};  a2 []={42,83,73,48,85};

           接着对a1,a2再分子序列,a11[] = {72,6,57} a12[] = {88,60};

                                                        a21[] = {42,83,73} a22[] = {48,85};

           接着对a11,a21再分子序列a111[] = {72,6} a211= {42,83} 这时候不在会发生递归,接着就是排序

(三)代码如下:

public class GuiBing {

public static void main (String agrs[]){
		
		int a[] = {72,6,57,88,60,42,83,73,48,85};
		guibing_sort(a,0,a.length-1);
		for(int i=0;i<a.length;i++)  
	        System.out.print(a[i]+","); 
	}


public static void guibing_sort(int s[],int low,int high){
	int mid = (low + high)/2;
	if(low < high){
		guibing_sort(s,low,mid);//递归
		guibing_sort(s,mid + 1,high);
		merge(s,low,mid,high);
	}

}

public static void merge(int s[],int low,int mid,int high){//最小的执行单元是2
	//                               0        0        1
	int temp[] = new int[high - low  + 1];//定义一个临时数组用来存放排好的数据
	int i = low;
	int j = mid +1;
	int k = 0;

	// 把较小的数先移到新数组中
	while(i <= mid && j <= high){
		if(s[i]< s[j]){
			temp[k++] = s[i++];
		}else{
			temp[k++] = s[j++];}
	}
	
	// 把左边剩余的数移入数组
	while(i <= mid){
		temp[k++] = s[i++];
	}
	// 把右边边剩余的数移入数组  
	while(j <=  high){
		temp[k++] = s[j++];
	}
	
	// 把新数组中的数覆盖s数组  
    for (int k2 = 0; k2 < temp.length; k2++) {  
       s[k2 + low] = temp[k2];  
    } 
}



(四)时间复杂度:归并排序的时间复杂度为O(nlogn)






















iOS中Layer的认识和使用

CALayer是什么 CALayer(层)是屏幕上的一个矩形区域,在每一个UIView中都包含一个CALayer,CALayer负责UIView的视图显示。 Layer与UIView的...

iOS开发UI篇—CAlayer(自定义layer)

iOS开发UI篇—CAlayer(自定义layer)

归并排序的原理及时间复杂度

归并排序的定义 归并排序算法采用的是分治算法,即把两个(或两个以上)有序表合并成一个新的有序表,即把待排序的序列分成若干个子序列,每个子序列都是有序的,然后把有序子序列合并成整体有序序列,这个过程也称...

2-路归并排序(C代码)及其时间复杂度的具体分析

归并排序的定义 归并排序算法采用的是分治算法,即把两个(或两个以上)有序表合并成一个新的有序表,即把待排序的序列分成若干个子序列,每个子序列都是有序的,然后把有序子序列合并成整体有序序列,这个过...

归并排序及其时间复杂度分析

1》归并排序的步骤如下:        Divide: 把长度为n的输入序列分成两个长度为n/2的子序列。        Conquer: 对这两个子序列分别采用归并排序。          ...

归并排序的分治算法与时间复杂度分析

算法思想(一般分治都是这三种思想): 1.分解:将待排序的问题分解成大小大致相等的两部分。 2.求解子问题:用归并排序的方法对两个子问题进行递归排序。 3.合并(merge):将排好序的有序子序...

归并排序及其时间复杂度分析

1.归并排序的步骤如下:        Divide: 把长度为n的输入序列分成两个长度为n/2的子序列。        Conquer: 对这两个子序列分别采用归并排序。       ...

自然归并排序算法时间复杂度分析

最近在看一部美剧《breaking bad》,从中领会了不少东西。回头再看过去写的博客,感觉真是很糟糕。真正自己的东西极少,大多数内容都是网上一搜一大堆的玩意,那么,这样的博客写着有什么意思呢? ...

归并排序时间复杂度----主定理

http://blog.csdn.net/touch_2011/article/details/6785881 1、序言 这是《漫谈经典排序算法系列》第四篇,解析了归并排序。  ...
  • bluetjs
  • bluetjs
  • 2016年09月09日 12:09
  • 6835
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:8大排序之 ---------归并排序 与时间复杂度
举报原因:
原因补充:

(最多只允许输入30个字)