关闭

从零开始配置深度学习环境:ubuntu16.04 cuda opencv caffe 需要的库

有一台空闲的服务器,上面有一块K40的卡,原来的系统进不去了可以拿来搞一搞。。nvidia驱动这一步好像可以跳过,因为之后安装cuda能选择是否安装驱动。 上官网NVIDIA Driver Downloads找自己显卡的型号,看看适合的驱动编号是什么。 之后输入命令:sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt-get u...
阅读(938) 评论(0)

Generative Adversarial Nets

相比于传统的识别、分类工作,生成对抗网络以一种逆向的思维,让计算机有了一定的创造能力。这种创造在实际中有更大的意义,甚至在复杂的工作中也能取得良好的效果。首先看一下最初的Goodfellow的工作:Generative Adversarial Nets。介绍关于GAN,论文中有一个很恰当的比喻: The generative model can be thought of as analogou...
阅读(442) 评论(0)

Caffe python layer 的自定义

还是caffe的自定义层问题。相比于c,python的自定义层更为简单:代码少、外部文件少、方便执行。因此用这种方法实现有利于开发和实验。准备首先还是要记得在编译的时候加上WITH_PYTHON_LAYER的选项,如果没有加可以先make clean删除编译后的文件,再重新编译。WITH_PYTHON_LAYER=1 make && make pycaffe如果出现layer_factory.hpp...
阅读(2766) 评论(9)

Deepdream 实现

Deepdream是一年半前谷歌搞的一个深度学习“艺术品”,最近在cs231n课上看到了,感觉还是很interesting。环境准备deepdream还是基于python和caffe深度网络的,因此大概需要以下环境: Standard Python scientific stack: NumPy, SciPy, PIL, IPython. Those libraries can also be in...
阅读(2435) 评论(2)

Caffe-python interface 学习|网络定义详解

之前用的都是caffe的命令行接口,单独训练还行,不过看里面层的参数、数据还是很麻烦的。特别是这周实验遇到了比较大的问题,命令行无能为力,还是要好好看看python接口。 python 接口编译 这个一般在编译caffe时都会顺带完成,如果遇到ImportError: No module named caffe,可能是没有编译或者没有添加到路径。 编译可以在根目录下make pycaff...
阅读(1638) 评论(0)

caffe自定义层

developing new layer 开发一个新层 添加一个层的类声明到:include/caffe/layers/your_layer.hpp。 包括type的内联实现方法覆盖virtual inline const char* type() const { return "YourLayerName"; },将YourLayerName替换为你的层名称。 实现{*} Blobs()方法来指...
阅读(1108) 评论(0)

转:Caffe 训练时loss等于87.33的原因及解决方法

如题,在caffe训练时,遇到这个特殊的数字之后,loss会一直就是这个数字。 网上虽然有很多针对这个问题调参的trick,但少有详细的分析,因此,有必要研究一下caffe的源代码。 softmax的公式为 pk=exp(xk)∑iexp(xi) 其中x为softmax前一层的输出 softmax的loss计算公式也很简单,就是对softmax之后预测的概率做对数似然函数...
阅读(2379) 评论(0)

Caffe-faster-rcnn demo测试

RCNN是目前detection中较新且准确度较高的方法,充分发挥了CNN分类的优势,但速度并不快,从而产生了fast rcnn和faster rcnn来解决这个问题。本文使用py-faster-rcnn对该方法做一初步测试。 rbgirshick/py-faster-rcnn 环境准备软件环境 Caffe Python 一般来说这些我们都已经有所接触,但仍有一些需要注意的地方: 要使用rbgi...
阅读(3476) 评论(0)

caffe学习(11)python的数据可视化

caffe本身没有可视化的工具,一般需要配合python或matlab实现数据的可视化,在实践本文之前要先把caffe python编译好。另外有的服务器只有shell,没有可视化的界面,只好先把每一层的数据先保存成图片格式,再进行显示。 Caffe学习系列(14):初识数据可视化 Python and/or MATLAB Caffe (optional) 载入数据 import nu...
阅读(471) 评论(0)

caffe学习(10)数据转换img2db

在处理图像时,我们已拥有的图像往往是常用的jpg、png格式,但在caffe中,输入的数据类型常是lmdb或leveldb,因此我们需要对原始数据进行转换。 Caffe学习系列(11):图像数据转换成db(leveldb/lmdb)文件 convert_imageset在caffe中,提供了一个用于格式转换的文件:convert_imageset.cpp,存放在根目录下的tools文件夹下。编译...
阅读(482) 评论(0)

caffe学习(9)LeNet在Caffe上的使用

使用官网例程训练LeNet。 Training LeNet on MNIST with Caffe 准备数据Caffe程序的运行要注意需命令行要在Caffe的根目录下。cd $CAFFE_ROOT ./data/mnist/get_mnist.sh ./examples/mnist/create_mnist.sh 依次运行,会在caffe\examples\mnist下得到两个目录mnist_t...
阅读(1695) 评论(0)

caffe学习(8)Solver 配置详解

Solver是求解学习模型的核心配置文件,网络确定后,solver就决定了学习的效果。本文结合caffe.proto和网上资料,对solver配置进行学习。 Solver Caffe学习系列(7):solver及其配置,denny402 Solver在caffe中的定义通常的solver文件与net文件相互关联,同样的net我们往往使用不同的solver尝试得到最好的效果,其运行代码为:c...
阅读(2109) 评论(5)

Google Protocol Buffer 学习

Caffe上有很多使用了Google Protocol Buffer的东西,从网上来看,这“是一种轻便高效的结构化数据存储格式,可以用于结构化数据串行化,很适合做数据存储或 RPC 数据交换格式。它可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式”。作为caffe模型定义的数据格式,看懂caffe.proto对caffe的理解会有很大帮助。 Google Proto...
阅读(392) 评论(0)

caffe学习(7)损失层、通用层

损失层Loss Layers损失通过将输出与目标进行比较,并不断优化减小loss。Softmax(with loss) 层类型:SoftmaxWithLoss 示例:layer { name: "loss" type: "SoftmaxWithLoss" bottom: "ip1" bott...
阅读(1418) 评论(0)

caffe学习(6)激活层

激活(Activation)层又叫神经元(Neuron)层,最主要的是激活函数的设置。 Activation / Neuron Layers Caffe源码解析6:Neuron_Layer,楼燚航的blog 一般来说,这一层是元素级的运算符,从底部blob作为输入并产生一个相同大小的顶部blob: 输入:n * c * h * w 输出:n * c * h * w ReLU / Recti...
阅读(382) 评论(0)
20条 共2页1 2 下一页 尾页
    个人资料
    • 访问:74331次
    • 积分:1211
    • 等级:
    • 排名:千里之外
    • 原创:44篇
    • 转载:5篇
    • 译文:5篇
    • 评论:18条
    文章分类
    最新评论
    小一一的CSDN