关闭

keras tips&problems

写了一下keras的层,出现了一些问题,值得总结一下~Python中对变量是否为None的判断这个问题出在以下代码段:self.mask = np.zeros(shape)if self.mask == None: pass else: pass直接运行会报错,原因在于对于numpy数组,对None的判断是对于其中元素的,而不是对于mask这个对象的。如果比较相同的对象实例,is总是...
阅读(37) 评论(0)

Tensorflow trick 与 细节

前后传播采用不同方式How Can I Define Only the Gradient for a Tensorflow Subgraph? Suppose you want group of ops that behave as f(x) in forward mode, but as g(x) in the backward mode. You implement it ast = g(x)...
阅读(55) 评论(0)

Keras backens函数

Keras是一个模型级的库,提供了很多高层函数。但它本身无法进行低级操作,如张量相乘、卷积等。因此它需要利用其他的库进行计算,作为后端引擎。除了常用的Tensorflow,还支持Theano(现在停止更新了),CNTK。Backend functionsset_image_data_formatset_image_data_format(data_format)参数: data_format: st...
阅读(141) 评论(0)

Caffe2 入门教程

Caffe2 概念Caffe2已经发布几个月了,但目前的使用率并不高,相关文档并不完善,与Caffe(1)相比入门较难。本文主要讲解Caffe2的一些概念,由于本人也是新手,仅做参考,欢迎交流。Tutorials: Intro TutorialBlobs and Workspace, Tensors和Caffe1一样,Caffe2也有Blobs,并也代表着内存中的数据块。大多数的blobs中都含有t...
阅读(340) 评论(0)

深度网络模型压缩DEEP COMPRESSION

DEEP COMPRESSION主要流程: pruning(剪枝) trained quantization(量化训练) Huffman coding(霍夫曼编码) 首先通过学习重要的连接来修剪网络;接下来,量化权重以实施权重共享;最后,应用霍夫曼编码。实际效果可以将AlexNet 无准确率损失压缩35倍,240MB到6.9MB,VGG-16压缩49倍,552MB到11.3MB。 Network...
阅读(295) 评论(0)

NIPS 2016 Tutorial: Generative Adversarial Networks GAN简介

如果说新手如何快速了解GAN,那么这篇论文tutorial应该会被大家推荐。首先作者牛,Ian Goodfellow就是GAN之父;其次文章详细,不仅有技术,也有背景、思想、技巧。我也同样是一名GAN新手,读了之后理解的并不一定很准确,也希望和大家多交流。 NIPS 2016 Tutorial: Generative Adversarial Networks 为什么要学习GAN第一部分首先解答了...
阅读(1343) 评论(0)

tf.cond 与 tf.control_dependencies 的控制问题

问题引入在搜索tf.cond的使用方法时,找到了这样的一个问题:运行下面的一段tensorflow代码:pred = tf.constant(True) x = tf.Variable([1]) assign_x_2 = tf.assign(x, [2]) def update_x_2(): with tf.control_dependencies([assign_x_2]): retu...
阅读(4815) 评论(0)

多任务深度学习论文阅读

Deep Learning Face Representation by Joint Identification-Verification这篇论文主要是针对人脸识别,分为两个任务: face identification task face verification task 前者目的是增大类间间距,即不同人的差距;后者是为了减小类内差距,即相同人在不同环境下的差异。 在网络的设计中,最终生成的...
阅读(489) 评论(0)

从零开始配置深度学习环境:ubuntu16.04 cuda opencv caffe 需要的库

有一台空闲的服务器,上面有一块K40的卡,原来的系统进不去了可以拿来搞一搞。。nvidia驱动这一步好像可以跳过,因为之后安装cuda能选择是否安装驱动。 上官网NVIDIA Driver Downloads找自己显卡的型号,看看适合的驱动编号是什么。 之后输入命令:sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt-get u...
阅读(938) 评论(0)

Mask RCNN 论文阅读

mask rcnn 是对Faster R-CNN的功能上的提升,速度上仍然在200ms(5fps)。Faster R-CNN回顾Faster R-CNN由两个阶段组成。 第一阶段为RPN网络,提出候选对象bounding boxes。第二阶段,本质上是Fast R-CNN,从每个候选框中提取使用RoIPool的特征,并执行分类和边界框回归。 Mask R-CNN特点Mask R-CNN在概念上很简单...
阅读(3778) 评论(0)

tensorflow 在windows下安装

蹭的深度学习课程,老师推荐用tensorflow做作业,因此先接触一下吧,不用来做项目,先熟悉一下语句。 相比于caffe,tensorflow没有复杂的编译过程,简单的可以把它看成一个python的库。所以安装起来也是很简单的~环境准备其实环境比最后的安装更重要= =也遇到了一些小问题。AnacondaTensorflow基于python,而Anaconda提供了较好的python环境,特别是建...
阅读(2762) 评论(0)

GoogleNet :Going deeper with convolutions 论文阅读

这次读旁边拿了纸笔记录,感觉还是方便一些,之后再写篇博客总结一下加深印象。问题引出Going deeper考虑的问题: 不在于训练数据、模型大小,希望得到新的模型结构; 可以用于移动计算,需要考虑功率、内存使用等问题。 NIN借鉴到的1*1卷积核: 降维(当然也可以升维),减少参数和计算; 增加深度、宽度,而没有明显性能损失。 目前提高深度神经网络性能的方法: 加大size→ 缺点: 容易造成过...
阅读(437) 评论(0)

cs231n笔记1

斯坦福深度学习与机器视觉课程cs231n,感觉挺不错的,顺便记下来一些零碎的点,不过具体内容还是要参考笔记、视频。不过网易云课堂的视频还是有些问题的。研究历史一开始是对猫的视觉进行研究,发现有如下神奇的特点: 对于整个图像,猫的视觉基础神经元没有被激活。 在切换图像时,神经元被激活。 因此研究人员认为神经元对简单形状、边缘有反应。David Marr提出视觉是分层的。Created with Rap...
阅读(277) 评论(0)

论文阅读:Hyper-class Augmented and Regularized Deep Learning for Fine-grained Image Classification

Xie S, Yang T, Wang X, et al. Hyper-class augmented and regularized deep learning for fine-grained image classification[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2015. 车型识别“Hy...
阅读(471) 评论(0)

caffe自定义层

developing new layer 开发一个新层 添加一个层的类声明到:include/caffe/layers/your_layer.hpp。 包括type的内联实现方法覆盖virtual inline const char* type() const { return "YourLayerName"; },将YourLayerName替换为你的层名称。 实现{*} Blobs()方法来指...
阅读(1108) 评论(0)
18条 共2页1 2 下一页 尾页
    个人资料
    • 访问:74339次
    • 积分:1211
    • 等级:
    • 排名:千里之外
    • 原创:44篇
    • 转载:5篇
    • 译文:5篇
    • 评论:18条
    文章分类
    最新评论
    小一一的CSDN