关闭

python小爬虫-糗百

序在家没事本来想弄一下pyqt,做一些python下的界面,但是eric装了半天没成功……于是改做爬虫(:3[__] 还好网上教程多,参考了一下,大致的框架都比较简单,难的在于针对不同的网页如何写正则表达式。不过这东西写多了应该就掌握方法了。从网上找了一段代码是爬糗百的,由于改版原来的表达式失效了,正好有了一个锻炼的机会。以下是代码:代码# -*- coding:utf-8 -*- import...
阅读(159) 评论(0)

Deepdream 实现

Deepdream是一年半前谷歌搞的一个深度学习“艺术品”,最近在cs231n课上看到了,感觉还是很interesting。环境准备deepdream还是基于python和caffe深度网络的,因此大概需要以下环境: Standard Python scientific stack: NumPy, SciPy, PIL, IPython. Those libraries can also be in...
阅读(2435) 评论(2)

Caffe-python interface 学习|网络训练、部署、测试

继续python接口的学习。剩下还有solver、deploy文件的生成和模型的测试。 网络训练 solver文件生成 其实我觉得用python生成solver并不如直接写个配置文件,它不像net配置一样有很多重复的东西。 对于一下的solver配置文件: base_lr: 0.001 display: 782 gamma: 0.1 lr_policy: “step” max...
阅读(3118) 评论(0)

Caffe-python interface 学习|网络定义详解

之前用的都是caffe的命令行接口,单独训练还行,不过看里面层的参数、数据还是很麻烦的。特别是这周实验遇到了比较大的问题,命令行无能为力,还是要好好看看python接口。 python 接口编译 这个一般在编译caffe时都会顺带完成,如果遇到ImportError: No module named caffe,可能是没有编译或者没有添加到路径。 编译可以在根目录下make pycaff...
阅读(1638) 评论(0)

cs231n笔记1

斯坦福深度学习与机器视觉课程cs231n,感觉挺不错的,顺便记下来一些零碎的点,不过具体内容还是要参考笔记、视频。不过网易云课堂的视频还是有些问题的。研究历史一开始是对猫的视觉进行研究,发现有如下神奇的特点: 对于整个图像,猫的视觉基础神经元没有被激活。 在切换图像时,神经元被激活。 因此研究人员认为神经元对简单形状、边缘有反应。David Marr提出视觉是分层的。Created with Rap...
阅读(277) 评论(0)

论文阅读:Hyper-class Augmented and Regularized Deep Learning for Fine-grained Image Classification

Xie S, Yang T, Wang X, et al. Hyper-class augmented and regularized deep learning for fine-grained image classification[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2015. 车型识别“Hy...
阅读(471) 评论(0)

caffe自定义层

developing new layer 开发一个新层 添加一个层的类声明到:include/caffe/layers/your_layer.hpp。 包括type的内联实现方法覆盖virtual inline const char* type() const { return "YourLayerName"; },将YourLayerName替换为你的层名称。 实现{*} Blobs()方法来指...
阅读(1108) 评论(0)

转:Caffe 训练时loss等于87.33的原因及解决方法

如题,在caffe训练时,遇到这个特殊的数字之后,loss会一直就是这个数字。 网上虽然有很多针对这个问题调参的trick,但少有详细的分析,因此,有必要研究一下caffe的源代码。 softmax的公式为 pk=exp(xk)∑iexp(xi) 其中x为softmax前一层的输出 softmax的loss计算公式也很简单,就是对softmax之后预测的概率做对数似然函数...
阅读(2379) 评论(0)

python文件命名小脚本

写个文件命名的python程序,复(yu)习一下python。 程序写得应该不是很好。。import os; import shutil; from PIL import Image; ##输入为图片路径 ##命名方式为统一位数数字递增 ##单一文件格式查找 ##输出为: ## result.txt 文件名,是否为完整图片 ## \full 完整图片库 ## \part 不完整图片库 pat...
阅读(243) 评论(0)

YOLO:You Only Look Once 论文阅读

You Only Look Once: Unified, Real-Time Object Detection YOLO官网 论文阅读笔记:You Only Look Once: Unified, Real-Time Object Detection 简介与特点YOLO是今年CVPR上提出的一种目标检测方法,其速度达到了45fps(YOLO v2 达到了67fps),完全可以处理视频。其框...
阅读(1342) 评论(0)

Machine learning: Trends, perspectives, and prospects

论文阅读:Machine learning: Trends, perspectives, and prospects绪论 机器学习强调让电脑通过学习自动地提高自己。其发展基于: 新的学习算法和理论 可用数据增多和计算成本变低 可以看到,机器学习的这几年的流行是多方面的因素,第二点的作用甚至更大一些:作为机器学习“燃料”的数据不仅提高了准确性,更避免了过拟合,提升泛化性能...
阅读(777) 评论(0)

Caffe-faster-rcnn demo测试

RCNN是目前detection中较新且准确度较高的方法,充分发挥了CNN分类的优势,但速度并不快,从而产生了fast rcnn和faster rcnn来解决这个问题。本文使用py-faster-rcnn对该方法做一初步测试。 rbgirshick/py-faster-rcnn 环境准备软件环境 Caffe Python 一般来说这些我们都已经有所接触,但仍有一些需要注意的地方: 要使用rbgi...
阅读(3476) 评论(0)

caffe学习(11)python的数据可视化

caffe本身没有可视化的工具,一般需要配合python或matlab实现数据的可视化,在实践本文之前要先把caffe python编译好。另外有的服务器只有shell,没有可视化的界面,只好先把每一层的数据先保存成图片格式,再进行显示。 Caffe学习系列(14):初识数据可视化 Python and/or MATLAB Caffe (optional) 载入数据 import nu...
阅读(471) 评论(0)

caffe学习(10)数据转换img2db

在处理图像时,我们已拥有的图像往往是常用的jpg、png格式,但在caffe中,输入的数据类型常是lmdb或leveldb,因此我们需要对原始数据进行转换。 Caffe学习系列(11):图像数据转换成db(leveldb/lmdb)文件 convert_imageset在caffe中,提供了一个用于格式转换的文件:convert_imageset.cpp,存放在根目录下的tools文件夹下。编译...
阅读(482) 评论(0)

caffe学习(9)LeNet在Caffe上的使用

使用官网例程训练LeNet。 Training LeNet on MNIST with Caffe 准备数据Caffe程序的运行要注意需命令行要在Caffe的根目录下。cd $CAFFE_ROOT ./data/mnist/get_mnist.sh ./examples/mnist/create_mnist.sh 依次运行,会在caffe\examples\mnist下得到两个目录mnist_t...
阅读(1695) 评论(0)
54条 共4页首页 上一页 1 2 3 4 下一页 尾页
    个人资料
    • 访问:74335次
    • 积分:1211
    • 等级:
    • 排名:千里之外
    • 原创:44篇
    • 转载:5篇
    • 译文:5篇
    • 评论:18条
    文章分类
    最新评论
    小一一的CSDN