关闭

Machine learning: Trends, perspectives, and prospects

论文阅读:Machine learning: Trends, perspectives, and prospects绪论 机器学习强调让电脑通过学习自动地提高自己。其发展基于: 新的学习算法和理论 可用数据增多和计算成本变低 可以看到,机器学习的这几年的流行是多方面的因素,第二点的作用甚至更大一些:作为机器学习“燃料”的数据不仅提高了准确性,更避免了过拟合,提升泛化性能...
阅读(777) 评论(0)

Caffe-faster-rcnn demo测试

RCNN是目前detection中较新且准确度较高的方法,充分发挥了CNN分类的优势,但速度并不快,从而产生了fast rcnn和faster rcnn来解决这个问题。本文使用py-faster-rcnn对该方法做一初步测试。 rbgirshick/py-faster-rcnn 环境准备软件环境 Caffe Python 一般来说这些我们都已经有所接触,但仍有一些需要注意的地方: 要使用rbgi...
阅读(3476) 评论(0)

caffe学习(11)python的数据可视化

caffe本身没有可视化的工具,一般需要配合python或matlab实现数据的可视化,在实践本文之前要先把caffe python编译好。另外有的服务器只有shell,没有可视化的界面,只好先把每一层的数据先保存成图片格式,再进行显示。 Caffe学习系列(14):初识数据可视化 Python and/or MATLAB Caffe (optional) 载入数据 import nu...
阅读(471) 评论(0)

caffe学习(10)数据转换img2db

在处理图像时,我们已拥有的图像往往是常用的jpg、png格式,但在caffe中,输入的数据类型常是lmdb或leveldb,因此我们需要对原始数据进行转换。 Caffe学习系列(11):图像数据转换成db(leveldb/lmdb)文件 convert_imageset在caffe中,提供了一个用于格式转换的文件:convert_imageset.cpp,存放在根目录下的tools文件夹下。编译...
阅读(482) 评论(0)

caffe学习(9)LeNet在Caffe上的使用

使用官网例程训练LeNet。 Training LeNet on MNIST with Caffe 准备数据Caffe程序的运行要注意需命令行要在Caffe的根目录下。cd $CAFFE_ROOT ./data/mnist/get_mnist.sh ./examples/mnist/create_mnist.sh 依次运行,会在caffe\examples\mnist下得到两个目录mnist_t...
阅读(1695) 评论(0)

caffe学习(8)Solver 配置详解

Solver是求解学习模型的核心配置文件,网络确定后,solver就决定了学习的效果。本文结合caffe.proto和网上资料,对solver配置进行学习。 Solver Caffe学习系列(7):solver及其配置,denny402 Solver在caffe中的定义通常的solver文件与net文件相互关联,同样的net我们往往使用不同的solver尝试得到最好的效果,其运行代码为:c...
阅读(2109) 评论(5)

Google Protocol Buffer 学习

Caffe上有很多使用了Google Protocol Buffer的东西,从网上来看,这“是一种轻便高效的结构化数据存储格式,可以用于结构化数据串行化,很适合做数据存储或 RPC 数据交换格式。它可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式”。作为caffe模型定义的数据格式,看懂caffe.proto对caffe的理解会有很大帮助。 Google Proto...
阅读(392) 评论(0)

caffe学习(7)损失层、通用层

损失层Loss Layers损失通过将输出与目标进行比较,并不断优化减小loss。Softmax(with loss) 层类型:SoftmaxWithLoss 示例:layer { name: "loss" type: "SoftmaxWithLoss" bottom: "ip1" bott...
阅读(1419) 评论(0)

caffe学习(6)激活层

激活(Activation)层又叫神经元(Neuron)层,最主要的是激活函数的设置。 Activation / Neuron Layers Caffe源码解析6:Neuron_Layer,楼燚航的blog 一般来说,这一层是元素级的运算符,从底部blob作为输入并产生一个相同大小的顶部blob: 输入:n * c * h * w 输出:n * c * h * w ReLU / Recti...
阅读(382) 评论(0)

caffe学习(5)视觉层

上一篇是数据层,这一篇是视觉层(Vision Layers)。参考官网和网友博客。 Vision Layers Caffe学习系列(3):视觉层(Vision Layers)及参数,denny402 Caffe源码解析5:Conv_Layer,楼燚航的blog 视觉层通常将图像作为输入,产生其他图像作为输出。图像输入可以是灰度图(通道C=1),RGB图(通道C=3)。同样图像也具有二...
阅读(436) 评论(0)

caffe学习(4)数据层

数据是学习的原料,参考官网和网友的资料,来看一下数据与数据层。 Data:Ins and Outs Caffe学习系列(2):数据层及参数,denny402 数据:输入与输出在Caffe中,数据是以Blobs流动的(见caffe学习(1)caffe模型三种结构)。数据层的输入输出便需要由其他格式与Blobs进行相互转换。一些常见的变换如平均减法(mean-subtraction)、特征缩放...
阅读(412) 评论(0)

caffe学习(3)接口

接口Interfaces Interfaces Caffe提供丰富的接口,比如命令行,python,matlab。先说一下命令行命令行 caffe命令及其参数解析,Single、Dog Caffe的程序位于caffe / build / tools,运行时可以在根目录执行./build/tools/caffe 。 其中有四种: train:...
阅读(576) 评论(0)

caffe学习(2)前后传播,loss,solver

向前和向后传播 Forward and Backward 前后传播是Net的重要组成,如下图所示: 向前Forward通过给定的参数计算每层的值,就像函数一样top=f(bottom)。 上图表示数据通过内积层输出,再由softmax给出损失。向后Backward向后是计算loss的梯度,每层梯度通过自动微分来计算整个模型梯度,即反向传播。 从这个图上可以看出,由loss开始,通过...
阅读(606) 评论(0)

caffe学习(1)caffe模型三种结构

caffe模型三种结构 自己写的然而CSDN出bug了,绑定三方账户原来的博客无法编辑,只好转发过来 Blobs, Layers, and Nets: anatomy of a Caffe model Blob:存储和传递(communication)blob是数据存储和传输的包装,并且还在底层提供CPU和GPU之间的同步能力。Blob提供了保存数据的统一存储器接口; 例如图像批次,模型参...
阅读(964) 评论(0)
    个人资料
    • 访问:74333次
    • 积分:1211
    • 等级:
    • 排名:千里之外
    • 原创:44篇
    • 转载:5篇
    • 译文:5篇
    • 评论:18条
    文章分类
    最新评论
    小一一的CSDN