关闭

NIPS 2016 Tutorial: Generative Adversarial Networks GAN简介

如果说新手如何快速了解GAN,那么这篇论文tutorial应该会被大家推荐。首先作者牛,Ian Goodfellow就是GAN之父;其次文章详细,不仅有技术,也有背景、思想、技巧。我也同样是一名GAN新手,读了之后理解的并不一定很准确,也希望和大家多交流。 NIPS 2016 Tutorial: Generative Adversarial Networks 为什么要学习GAN第一部分首先解答了...
阅读(1343) 评论(0)

caffe2 安装与介绍

一早发现caffe2的较成熟的release版发布了(the first production-ready release),那么深度学习平台在之后一段时间也是会出现其与tensorflow相互竞争的局面。 从打开这个caffe2的官网就会发现,有了Facebook的支持,连界面也好看多了。不过再仔细看看,觉得又和tensorflow有一丝像,从内到外。Caffe 2 Caffe2Caffe2 中...
阅读(12758) 评论(0)

tf.cond 与 tf.control_dependencies 的控制问题

问题引入在搜索tf.cond的使用方法时,找到了这样的一个问题:运行下面的一段tensorflow代码:pred = tf.constant(True) x = tf.Variable([1]) assign_x_2 = tf.assign(x, [2]) def update_x_2(): with tf.control_dependencies([assign_x_2]): retu...
阅读(4815) 评论(0)

多任务深度学习论文阅读

Deep Learning Face Representation by Joint Identification-Verification这篇论文主要是针对人脸识别,分为两个任务: face identification task face verification task 前者目的是增大类间间距,即不同人的差距;后者是为了减小类内差距,即相同人在不同环境下的差异。 在网络的设计中,最终生成的...
阅读(489) 评论(0)

cuda 学习 | GPU的归约、扫描、直方图算法

两种复杂度 Step complexity 即步骤复杂度,完成一个工作需要多少步。 Work complexity 即工作复杂度,完成工作一共需要的工作量。 对于并行计算,由于可以采取多线程的运算,可以对每一步的运算时间进行很大的缩减。但对于整个程序,有时需要分很多步骤,后续步骤需要等待前面的步骤处理完得到结果才能继续执行。因此有时步骤的复杂度反而决定了整个程序运行的时间。Reduce 归约归约...
阅读(545) 评论(0)
    个人资料
    • 访问:74339次
    • 积分:1211
    • 等级:
    • 排名:千里之外
    • 原创:44篇
    • 转载:5篇
    • 译文:5篇
    • 评论:18条
    文章分类
    最新评论
    小一一的CSDN