617人阅读 评论(0)

time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1 to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input

The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.

Output

Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
Input
3
2 3 1

Output
6

Input
4
2 1 1 1

Output
8

Input
5
2 4 2 5 3

Output
28

Note

Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are , , initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.

有一个N个点，每个点出度为1的图，求有多少种使边反向的方案，使得图中没有环。

很容易就想到，对于环，方案数是2^(环上边的个数)-2＊2^(其它边的个数)。而且由于这个图的每个点的出度为1，所以画一下图很容易就可以发现，对于每个环只可能有其它的点指向环，不可能由环内指向环外。而且不可能有两个环有公共部分。这样就很简单了，只需要dfs一遍找到所有环的边的个数就可以直接算出答案了。

AC代码：

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
using namespace std;
#define mem(a,b) memset((a),(b),sizeof(a))
#define LL long long
#define MOD 1000000007

const int maxn=200000+3;
int N,to[maxn],id[maxn],tim[maxn],sum=0,T;
vector<int> c_num;//记录每个环的节点数

void dfs(int x,int t)
{
id[x]=t;//标记dfs到到次序
tim[x]=T;//标记是第几次dfs
if(id[to[x]]!=-1&&tim[to[x]]==T)//找到环
{
c_num.push_back(id[x]+1-id[to[x]]);
sum+=id[x]+1-id[to[x]];
}
else if(id[to[x]]==-1)//没有访问过
dfs(to[x],t+1);
}

LL mod_pow(LL x,LL n)//快速幂
{
LL res=1;
while(n>0)
{
if(n&1)
res=res*x%MOD;
x=x*x%MOD;
n>>=1;
}
return res;
}

int main()
{
scanf("%d",&N);
for(int i=1;i<=N;++i)
scanf("%d",&to[i]);
mem(id,-1);
for(int i=1;i<=N;++i)
if(id[i]==-1)//没有访问过的点
{
++T;
dfs(i,1);
}
LL sum1=1;
for(int i=0;i<c_num.size();++i)
sum1=(sum1*(mod_pow(2,c_num[i])-2))%MOD;
printf("%lld\n",sum1*mod_pow(2,N-sum)%MOD);

return 0;
}

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：51747次
• 积分：2241
• 等级：
• 排名：第19360名
• 原创：176篇
• 转载：2篇
• 译文：0篇
• 评论：32条
文章分类
阅读排行
最新评论