单源最短路径 Bellman_Ford

一、问题简述
Dijkstra算法无法判断含负权边的图的最短路。如果遇到负权,在没有负权回路(回路的权值和为负,即便有负权的边)存在时,也可以采用Bellman - Ford算法正确求出最短路径。
Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图 G=(V,E), 其源点为v0。
接下来分析回路问题,如果有正回路,则动态规划会因为松弛操作选出最优答案,必然是不会走重复回路的,那么n-1个节点就能找到再也无法松弛的结果,无须担心。但是如果是负回路,那么步数越多,则距离越小,所以对最后结果再进行松弛操作,也是可以找到答案的。
如果不存在这样的负回路,算法将给出从源点s到 图G的任意顶点v的最短路径d[v]。
附:松弛操作
这里写图片描述
二、算法思想
首先:初始化邻接矩阵
其次:进行不断的松弛操作(bellman函数)
这里写图片描述

另外:再把每次松弛时把每条边都更新一下,若在n-1次松弛后还能更新,则说明图中有负环,因此无法得出结果(minus函数)。
最后:path函数去寻找路径

三、具体代码

#include <iostream>
#include<stack>
#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<queue>
#include<climits>
#include<cstring>
using namespace std;
struct node0
{
    int kdist;
    int dist;
    int path;
};
int i,j,k;
int bellman( int **graph,n
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值