关闭

深度学习方法(六):神经网络weight参数怎么初始化

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。  技术交流QQ群:433250724,欢迎对算法、技术感兴趣的同学加入。 神经网络,或者深度学习算法的参数初始化是一个很重要的方面,传统的初始化方法从高斯分布中随机初始化参数。甚至直接全初始化为1或者0。这样的方法暴力直接,但是往往效果一般。本篇文章的叙述来源于一个国外的讨论帖子[1],下面就自己的...
阅读(842) 评论(0)

隐马尔可夫模型(HMM)攻略

隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值。平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍。   考虑下面交通灯的...
阅读(730) 评论(0)

解决nginx负载均衡的session共享问题

查了一些资料,看了一些别人写的文档,总结如下,实现nginx session的共享 PHP服务器有多台,用nginx做负载均衡,这样同一个IP访问同一个页面会被分配到不同的服务器上,如果session不同步的话,就会出现很多问题,比如说最常见的登录状态,下面提供了几种方式来解决session共享的问题: 1、不使用session,换用cookie session是存放在服务器端的...
阅读(727) 评论(0)

机器学习(Machine Learning)&深度学习(Deep Learning)资料

機器學習、深度學習方面不錯的資料,轉載。 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新,本文更新至2014-12-21 《Brief History of Machine Learning》 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树...
阅读(480) 评论(0)

python中if __name__ == '__main__': 的解析

当你打开一个.py文件时,经常会在代码的最下面看到if __name__ == '__main__':,现在就来介 绍一下它的作用.         模块是对象,并且所有的模块都有一个内置属性 __name__。一个模块的 __name__ 的值取决于您如何应用模块。如果 import 一个模块,那么模块__name__ 的值通常为模块文件名,不带路径或者文件扩展名。但是您也可以像一个标准的...
阅读(620) 评论(0)

有return的情况下try catch finally的执行顺序(最有说服力的总结)

结论: 1、不管有木有出现异常,finally块中代码都会执行; 2、当try和catch中有return时,finally仍然会执行; 3、finally是在return后面的表达式运算后执行的(此时并没有返回运算后的值,而是先把要返回的值保存起来,管finally中的代码怎么样,返回的值都不会改变,任然是之前保存的值),所以函数返回值是在finally执行前确定的; 4、finally...
阅读(214) 评论(0)

均值、方差、协方差、协方差矩阵、特征值、特征向量

均值:描述的是样本集合的中间点。 方差:描述的是样本集合的各个样本点到均值的距离之平均,一般是用来描述一维数据的。   协方差: 是一种用来度量两个随机变量关系的统计量。只能处理二维问题。计算协方差需要计算均值。 如下式:   方差与协方差的关系 方差是用来度量单个变量 “ 自身变异”大小的总体参数,方差越大表明该变量的变异越...
阅读(3568) 评论(0)

协方差矩阵概念及计算

理解协方差矩阵的关键就在于牢记它计算的是不同维度之间的协方差,而不是不同样本之间,拿到一个样本矩阵,我们最先要明确的就是一行是一个样本还是一个维度,心中明确这个整个计算过程就会顺流而下,这么一来就不会迷茫了 浅谈协方差矩阵 今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决定马上记录下来,嘿嘿~本文...
阅读(321) 评论(0)

23种设计模式(5):原型模式

定义:用原型实例指定创建对象的种类,并通过拷贝这些原型创建新的对象。 类型:创建类模式 类图: 原型模式主要用于对象的复制,它的核心是就是类图中的原型类Prototype。Prototype类需要具备以下两个条件: 实现Cloneable接口。在java语言有一个Cloneable接口,它的作用只有一个,就是在运行时通知虚拟机可以安全地在实现了此接口的类上使用clo...
阅读(247) 评论(0)

Java:单例模式的七种写法

转载出处:http://cantellow.javaeye.com/blog/838473 第一种(懒汉,线程不安全):  1 public class Singleton {    2     private static Singleton instance;    3     private Singleton (){}     4     public stati...
阅读(219) 评论(0)

synchronized 与 Lock 的那点事

最近在做一个监控系统,该系统主要包括对数据实时分析和存储两个部分,由于并发量比较高,所以不可避免的使用到了一些并发的知识。为了实现这些要求,后台使用一个队列作为缓存,对于请求只管往缓存里写数据。同时启动一个线程监听该队列,检测到数据,立即请求调度线程,对数据进行处理。 具体的使用方案就是使用同步保证数据的正常,使用线程池提高效率。   同步的实现当然是采用锁了,java中使用锁的两个基...
阅读(155) 评论(0)

maven初始化项目记录

一、设置java path和java home 二、解压maven,添加path,mvn -v 三、安装eclipse luna 四、hello world项目 mvn archetype:generate -DgroupId=com.yelbosh.sort -DartifactId=sortcode -DarchetypeArtifactId=maven-arc...
阅读(1011) 评论(0)

统计学习笔记(3)——k近邻法与kd树

在使用k近邻法进行分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决的方式进行预测。由于k近邻模型的特征空间一般是n维实数向量,所以距离的计算通常采用的是欧式距离。关键的是k值的选取,如果k值太小就意味着整体模型变得复杂,容易发生过拟合,即如果邻近的实例点恰巧是噪声,预测就会出错,极端的情况是k=1,称为最近邻算法,对于待预测点x,与x最近的点决定了x的类别。k值得增大意味着整体的...
阅读(320) 评论(0)

GBDT(MART) 迭代决策树入门教程 | 简介

在网上看到一篇对从代码层面理解gbdt比较好的文章,转载记录一下:                GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力(g...
阅读(369) 评论(0)

bootstrap, boosting, bagging 几种方法的联系

转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jackknife, bagging, boosting, random forest 都有介绍,以下是搜索得到的原文,没找到博客作者的地址, 在这里致谢作者的研究。 一并列出一些找到的...
阅读(371) 评论(0)
514条 共35页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:1366500次
    • 积分:13509
    • 等级:
    • 排名:第1072名
    • 原创:203篇
    • 转载:311篇
    • 译文:0篇
    • 评论:141条