Tensorflow系列:tf.random_normal

原创 2017年01月03日 13:40:09
在CNN代码里,可能有这样一句话: W1 = tf.Variable(tf.random_normal([3, 3, 1, 32], stddev=0.01)),对于函数tf.random_normal解释如下:
tf.random_normal
tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

Outputs random values from a normal distribution.

Args:

shape: A 1-D integer Tensor or Python array. The shape of the output tensor.用一个list表示产出的Tensor的形状
mean: A 0-D Tensor or Python value of type dtype. The mean of the normal distribution.均值
stddev: A 0-D Tensor or Python value of type dtype. The standard deviation of the normal distribution.标准差
dtype: The type of the output.数据类型
seed: A Python integer. Used to create a random seed for the distribution. See set_random_seed for behavior.
name: A name for the operation (optional).
Returns:

A tensor of the specified shape filled with random normal values.

例子:
norm = tf.random_normal([2, 3], seed=1234)
sess = tf.Session()
print(sess.run(norm))
print(sess.run(norm))


输出:
[[ 0.51340485 -0.25581399 0.65199131]
[ 1.39236379 0.37256798 0.20336303]]
[[ 0.96462417 0.34291974 0.24251089]
[ 1.05785966 1.65749764 0.82108968]]

相关文章推荐

tensorflow中tf.random_normal和tf.truncated_normal的区别

1、tf.truncated_normal使用方法 tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=N...

TensorFlow学习笔记(5)----TF生成数据的方法

介绍TF中生成各种数据(变量、随机矩阵)的一些方法
  • PhDat101
  • PhDat101
  • 2016年09月05日 19:03
  • 19039

TensorFlow学习笔记(十六)tf.random_normal

W1 = tf.Variable(tf.random_normal([3, 3, 1, 32], stddev=0.01)),对于函数tf.random_normal解释如下: tf.random_n...

tf.truncated_normal与tf.random_normal的区别

作为tensorflow里的正态分布产生函数,这两个函数的输入参数几乎完全一致, 而其主要的区别在于,tf.truncated_normal的输出如字面意思是截断的,而截断的标准是2倍的stddev。...

tf.truncated_normal与tf.random_normal

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)从截断的正态分布输出随机...

tensorflow生成随机数的操作 tf.random_normal & tf.random_uniform & tf.truncated_normal & tf.random_shuffle

____tz_zs学习笔记 tf.random_normal 从正态分布输出随机值。 random_normal(shape,mean=0.0,stddev=1.0,dtype=...
  • tz_zs
  • tz_zs
  • 2017年07月23日 22:18
  • 1919

tensorflow笔记 :常用函数说明

本文章内容比较繁杂,主要是一些比较常用的函数的用法,结合了网上的资料和源码,还有我自己写的示例代码。建议照着目录来看。1.矩阵操作1.1矩阵生成这部分主要将如何生成矩阵,包括全0矩阵,全1矩阵,随机数...

tensorflow笔记 :常用函数说明

tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔...

【机器学习】Tensorflow学习笔记

构建网络模型基本的MLP网络结构基本的感知机模型,没有加入b 模型: Y=W∗(W∗X)Y = W*(W*X)import tensorflow as tf import numpy as np i...

tf.random_uniform的使用

tf.random_uniform((4, 4), minval=low,maxval=high,dtype=tf.float32)))返回4*4的矩阵,产生于low和high之间,产生的值是均匀分布...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Tensorflow系列:tf.random_normal
举报原因:
原因补充:

(最多只允许输入30个字)