扩展卡尔曼滤波EKF与多传感器融合

Extended Kalman Filter(扩展卡尔曼滤波)是卡尔曼滤波的非线性版本。在状态转移方程确定的情况下,EKF已经成为了非线性系统状态估计的事实标准。本文将简要介绍EKF,并介绍其在无人驾驶多传感器融合上的应用。

这里写图片描述

KF与EKF

本文假定读者已熟悉KF,若不熟悉请参考卡尔曼滤波简介

KF与EKF的区别如下:

  1. 预测未来: x=Fx+u x=f(x,u) 代替;其余 F Fj代替。
  2. 修正当下:将状态映射到测量的 Hx h(x) 代替;其余 H Hj代替。

其中,非线性函数 f(x,u)h(x) 用非线性得到了更精准的状态预测值、映射后的测量值;线性变换 FjHj 通过线性变换使得变换后的 xz 仍满足高斯分布的假设。

FjHj 计算方式如下:

Fjb=f(x,u)x=h(x)x

这里写图片描述

为什么要用EKF

KF的假设之一就是高斯分布的 x 预测后仍服从高斯分布,高斯分布的x变换到测量空间后仍服从高斯分布。可是,假如 FH 是非线性变换,那么上述条件则不成立。

将非线性系统线性化

既然非线性系统不行,那么很自然的解决思路就是将非线性系统线性化。

对于一维系统,采用泰勒一阶展开即可得到:

f(x)f(μ)+f(μ)x(xμ)

对于多维系统,仍旧采用泰勒一阶展开即可得到:

T(x)f(a)+(xa)TDf(a)

其中, Df(a) 是Jacobian矩阵。

多传感器融合

lidar与radar

本文将以汽车跟踪为例,目标是知道汽车时刻的状态 x=(px,py,vx,vy) 。已知的传感器有lidar、radar。

  • lidar:笛卡尔坐标系。可检测到位置,没有速度信息。其测量值 z=(px,py)
  • radar:极坐标系。可检测到距离,角度,速度信息,但是精度较低。其测量值 z=(ρ,ϕ,ρ˙) ,图示如下。

这里写图片描述

传感器融合步骤

这里写图片描述

步骤图如上所示,包括:

  1. 收到第一个测量值,对状态 x 进行初始化。
  2. 预测未来
  3. 修正当下

初始化

初始化,指在收到第一个测量值后,对状态x进行初始化。初始化如下,同时加上对时间的更新。

对于radar来说,

pxpyvxvy=10000100[pxpy]

对于radar来说,

pxpyvxvy=ρcosϕρsinϕρ˙cosϕρ˙sinϕ

预测未来

预测主要涉及的公式是:

xP=Fx=FPFT+Q

需要求解的有三个变量: FPQ


F 表明了系统的状态如何改变,这里仅考虑线性系统,F易得:

Fx=10000100dt0100dt01pxpyvxvy


P 表明了系统状态的不确定性程度,用x的协方差表示,这里自己指定为:

P=1000010000100000001000


Q 表明了x=Fx未能刻画的其他外界干扰。本例子使用线性模型,因此加速度变成了干扰项。 x=Fx 中未衡量的额外项目 v 为:

v=axdt22aydt22axdtaydt=dt220dt00dt220dt[axay]=Ga

v 服从高斯分布N(0,Q)

Q=E[vvT]=E[GaaTGT]=GE[aaT]GT=G[σ2ax00σ2ay]GT=dt44σ2ax0dt32σ2ax00dt44σ2ay0dt32σ2aydt32σ2ax0dt2σ2ax00dt32σ2ay0dt2σ2ay

修正当下

lidar

lidar使用了KF。修正当下这里牵涉到的公式主要是:

ySKxP=zHx=HPHT+R=PHTS1=x+Ky=(IKH)P

需要求解的有两个变量: HR


H 表示了状态空间到测量空间的映射。

Hx=[10010000]pxpyvxvy


R 表示了测量值的不确定度,一般由传感器的厂家提供,这里lidar参考如下:

Rlaser=[0.0225000.0225]

radar

radar使用了EKF。修正当下这里牵涉到的公式主要是:

ySKxP=zf(x)=HjPHTj+R=PHTjS1=x+Ky=(IKHj)P

区别与上面lidar的主要有:

  1. 状态空间到测量空间的非线性映射 f(x)
  2. 非线性映射线性化后的Jacob矩阵
  3. radar的 Rradar

状态空间到测量空间的非线性映射 f(x) 如下

f(x)=ρϕρ˙=p2x+p2yarctanpypxpxvx+pyvyp2x+p2y


非线性映射线性化后的Jacob矩阵 Hj

Hj=f(x)x=ρpxϕpxρ˙pxρpyϕpyρ˙pyρvxϕvxρ˙vxρvyϕvyρ˙vy


R 表示了测量值的不确定度,一般由传感器的厂家提供,这里radar参考如下:

Rlaser=0.090000.00090000.09

传感器融合实例

多传感器融合的示例如下,需要注意的有:

  1. lidar和radar的预测部分是完全相同的
  2. lidar和radar的参数更新部分是不同的,不同的原因是不同传感器收到的测量值是不同的
  3. 当收到lidar或radar的测量值,依次执行预测、更新步骤
  4. 当同时收到lidar和radar的测量值,依次执行预测、更新1、更新2步骤

这里写图片描述

多传感器融合的效果如下图所示,红点和蓝点分别表示radar和lidar的测量位置,绿点代表了EKF经过多传感器融合后获取到的测量位置,取得了较低的RMSE。

这里写图片描述

  • 67
    点赞
  • 528
    收藏
    觉得还不错? 一键收藏
  • 46
    评论
足式机器人是移动机器人的重要组成部分,相较于轮式、履带式机器人,足式机器人在运动过程中自主选择落足点,从而越过路面障碍,在山地运输、抢险以及军事等领域存在应用潜力。目前,足式机器人的快速动步态行走已经成为国内外研究热点,而机身姿态和速度等实时运动参数是机器人平稳运动控制所需的重要反馈信息。但是常用的惯性测量组件往往存在偏差和随机误差,速度解算严重漂移,同时足式机器人工作时因足底交互作用导致的冲击振动,进一步增大了速度估计的难度。如何利用足式机器人的结构特点、本体传感器以及惯性测量组件,以较低的成本稳定有效地估计出其运动速度,已经成为机器人导航技术中的重要研究方向。本文比较了多种足式机器人状态估计方法,针对双足机器人和四足机器人,采用了扩展卡尔曼滤波有效地融合了捷联惯导信息和正运动学信息,获得了稳定准确的机器人速度估计。 首先,为了识别偏差和随机误差,针对MEMS捷联惯导进行了预处理,进而完成了导航解算。研究并对比了加速度计的静态标定和在线标定方法,实现了偏差的动态识别和补偿,并且根据Allan方差法有效识别了加速度计的随机误差,为数据融合算法奠定了基础。进而根据捷联惯导工作机制和实际机器人运动,分析简化了速度解算方法。然后进行滑台实验,初步验证了捷联惯导预处理、导航

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值