FasterRCNN代码解读

之前的文章简要介绍了Faster-RCNN等物体检测的算法,本文将从代码角度详细分析介绍Faster-RCNN的实现。本文使用的代码参考了chenyuntc的实现,代码的位置看这里。需要注意的是,本文使用的框架是Pytorch。

图片名称

数据载入

数据载入部分的代码主要见./data/dataset.py中的类DatasetTestDataset

数据载入部分的逻辑如下:

  1. 从VOC数据集中获得img, bbox, label
  2. img, bbox进行放缩(放缩的目的是让图片处于合适的大小,这样预先指定锚框才有意义)
  3. img进行标准化正则处理
  4. 如果是训练阶段,将img翻转以增加训练数据

网络结构

FasterRCNN的网络结构如下图所示:

这里写图片描述

FasterRCNN结构的代码主要见./model.faster_rcnn.py,其结构包含三大部分:

  1. 预训练的CNN模型 decom_vgg16
  2. rpn网络RegionProposalNetwork
  3. roi及以上网络VGG16RoIHead

下面,将以放缩后大小为[1, 3, 600, 800]的图片为例针对每个部分分别介绍。图像类别共计21类(包含背景)。

预训练的CNN模型

该部分代码见./model/vgg16.py

输入:图片,大小[1, 3, 600, 800]
输出:特征图features,大小[1, 512, 37, 50]


其逻辑如下:

  1. 载入预先训练好的CNN模型VGG16。
  2. 将模型拆分为两部分extractor, classifier。其中,extractor的参数固定。
  3. 图片通过extractor可以得到特征图features。根据extractor中池化参数可知图像通过extractor缩小了16倍。

rpn网络

该部分代码见./model/rpn.py

输入:特征图features,大小[1, 512, 37, 50]
输出:

  • rpn_locs:rpn对位置的修正,大小[1, 16650, 4]
  • rpn_scores :rpn判断区域前景背景,大小[1, 16650, 2]
  • rois:rpn筛选出的roi的位置,大小[300, 4]
  • roi_indices:rpn筛选出的roi对应的图片索引,大小[300]
  • anchor:原图像的锚点,大小[16650, 4]

其中,16650是放缩后的图像所产生的所有锚点(37*50*9),每个锚点都对应了一个rp。通过 rpn_scores以及nms可以得到筛选后的大小为300的roi。


其逻辑如下:

  1. 对特征图features以基准长度为16、选择合适的ratiosscales取基准锚点anchor_base。(选择长度为16的原因是图片大小为600*800左右,基准长度16对应的原图区域是256*256,考虑放缩后的大小有128*128,512*512比较合适)
  2. 根据anchor_base在原图上获得anchors
  3. 对特征图features采用卷积得到rpn_locsrpn_scores
  4. 根据anchorsrpn_locs获得修正后的rp
  5. rp进一步修正获得roisroi_indices,修正包括超出边界的部分截断、移除太小的、nms。

roi及以上网络

该部分代码见./model/roi_module.py

输入:

  • features:特征图,大小[1, 512, 37, 50]
  • rois:rpn筛选出的roi的位置,大小[300, 4]
  • roi_indices:rpn筛选出的roi对应的图片索引,大小[300]

输出:

  • roi_cls_locsroi位置的修正,大小[300, 84]
  • roi_scoresroi各类的分数,大小[300, 21]

其逻辑如下:

  1. 通过RoIPooling2D将大小不同的roi变成大小一致,得到pooling后的特征,大小为[300, 512, 7, 7]
  2. 接入预训练的CNN模型引入的classifier
  3. 分别接入全连接得到roi_cls_locsroi_scores

训练

训练部分的代码主要见./trainer/trainer.py中的FasterRCNNTrainer中的train_step函数。

训练部分的核心是loss如何求取。

loss求取前网络的步骤如下:

  1. 预训练CNN特征提取:输入imgextractor获得features
  2. rpn网络得到roi:输入featuresrpn获得rpn_locs, rpn_scores, rois, roi_indices, anchor
  3. 抽样roi:输入roisbboxlabelProposalTargetCreator获得sample_roi, gt_roi_loc, gt_roi_label。该步骤的含义是得到正负例比例和位置合适的roi
  4. head网络得到roi的位置修正与分数:输入features,sample_roi,sample_roi_index得到roi_cls_loc, roi_score

各个loss求取的方式如下:

  1. rpn_loc_loss:已知rpn_loc,需要先根据anchorbbox得到真实的gt_rpn_locgt_rpn_label。该处loss的计算只考虑前景,所以根据rpn_loc,gt_rpn_loc,gt_rpn_label计算L1-LOSS即可。
  2. rpn_cls_loss:根据rpn_scoregt_rpn_label计算二分类的交叉熵即可。
  3. roi_loc_loss:已知roi_loc,在sample roi的过程中已获得gt_roi_loc, gt_roi_label。根据roi_loc,gt_roi_loc,gt_roi_label计算L1-LOSS即可。
  4. roi_cls_loss:根据roi_scoregt_roi_label计算多分类的交叉熵即可。

整体的loss为以上各loss相加求和。

测试

训练部分的代码主要见./model/faster_rcnn.py中的FasterRCNNTrainer中的predict函数。

其步骤如下:

  1. 图片预处理
  2. 预训练CNN特征提取:输入imgextractor获得features
  3. rpn网络得到roi:输入featuresrpn获得rpn_locs, rpn_scores, rois, roi_indices, anchor
  4. head网络得到roi的位置修正与分数:输入features,rois,roi_indices得到roi_cls_loc, roi_score
  5. 得到图片预测的bbox:输入roi_cls_locroi_scorerois,采用nms等方法得到预测的bbox
  • 11
    点赞
  • 75
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
Faster RCNN是一种用于目标检测的深度学习模型,其基本思想是将卷积神经网络(CNN)应用于目标检测任务,并引入了两个关键的概念:Region Proposal Network(RPN)和ROI Pooling。 Faster RCNN的整体流程包含四个主要步骤: 1. 特征提取:首先通过预训练好的CNN网络(如VGGNet或ResNet)将输入图像进行特征提取,得到图像的高层次特征表示。 2. RPN生成候选框:在特征图上通过滑动窗口方式,为每个窗口生成多个候选框,并判断候选框是否包含物体。RPN引入了一个二分类模型和一个边界框回归模型,用于判断候选框是否为目标物体和优化其位置。 3. ROI Pooling:根据RPN生成的候选框,在特征图上对每个候选框进行ROI Pooling操作,将其转化为固定大小的特征图,用于输入全连接层。 4. 目标分类与位置回归:将ROI Pooling得到的特征图输入全连接层,分别进行目标分类和位置回归。分类使用softmax激活函数,回归使用回归器对候选框的位置进行微调。 Faster RCNN通过共享特征提取网络,减少了计算时间,并且加入了RPN网络,消除了传统目标检测方法中的候选框生成步骤,大大提升了检测速度。与之前的RCNNFast RCNN相比,Faster RCNN具有更高的检测精度和更快的检测速度。 总结来说,Faster RCNN是一种基于卷积神经网络的目标检测方法,通过引入RPN网络和ROI Pooling操作,实现了高效准确的目标检测。它的核心思想在于通过CNN提取图像特征,通过RPN生成候选框,再通过ROI Pooling和全连接层进行分类和位置回归。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值