# CodeForces-17A-Noldbach problem

Description

Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick’s attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least k prime numbers from 2 to n inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5 + 7 + 1.

Two prime numbers are called neighboring if there are no other prime numbers between them.

You are to help Nick, and find out if he is right or wrong.

Input

The first line of the input contains two integers n (2 ≤ n ≤ 1000) and k (0 ≤ k ≤ 1000).

Output

Output YES if at least k prime numbers from 2 to n inclusively can be expressed as it was described above. Otherwise output NO.

Sample Input
Input

27 2

Output

YES

Input

45 7

Output

NO

Hint

In the first sample the answer is YES since at least two numbers can be expressed as it was described (for example, 13 and 19). In the second sample the answer is NO since it is impossible to express 7 prime numbers from 2 to 45 in the desired form.

#include<bits/stdc++.h>
using namespace std;
const int N = 2222;
int prime[N],pre[N];

bool pri(int num)
{
for(int i=2;i*i<=num;i++)
if(num%i==0) return false;
return true;
}

void init()
{
int i,j,cnt;
for(i=2;i<=1000;i++) {
if(!prime[i])
for(j=i+i;j<=1000;j+=i)
prime[j]=1;
}
cnt=0;
for(i=2;i<=1000;i++) {
if(!prime[i]) prime[++cnt]=i;
}
for(i=2;i<=cnt;i++) {
int t=prime[i]+prime[i-1]+1;
if(pri(t)) pre[t]=1;
}
for(i=1;i<=1000;i++) {
pre[i]+=pre[i-1];

}
}

int main()
{
init();
int n,k;
while(scanf("%d%d",&n,&k)!=EOF)
{
if(pre[n]>=k) printf("YES\n");
else printf("NO\n");
}
return 0;
}



• 本文已收录于以下专栏：

举报原因： 您举报文章：CodeForces-17A-Noldbach problem 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)