统计学 入门基础概念篇 Probability 概率部分 (个人笔记)

原创 2016年06月09日 02:43:39

排列 \ 组合 

Combination : sometimes, we want to count all of the possible ways that a single set of object can be selected without regard to the order in which they are selected. 

组合就是从一堆东西里面选出一定量的元素并且不考虑取的顺序, 能有多少种可能的组合


The number of combinations of n objects taken r at a time is denoted by nCr 

这句话的意思是: 一堆数量为 n 的元素,一次性从里面拿出 r 个. 把这个过程定义为 nCr 

nCr  =n * ( n - 1) * ( n - 2 ) ... ( n - r + 1) / r! =  n! / ( r! * (n - r)! )


Permutation: we want to count all of the possible ways that a single set of objects can be arranged. 

排列就是从一堆东西选出一定量的元素但是考虑他们的顺序.

nPr = n(n - 1)(n - 2) ... (n - r + 1) = n! / (n - r)!


What is probability?

 the probability of an event refers to the likelihood that the event will occur.

概率就是一个事件发生的可能性,

Some definitions?

1. two events are mutually exclusive ordisjointif they can not occur at the same the time. 

两个事件不可能同时发生则称这两个事件是互斥的.

2. the probability that event A occurs, given that Event B has occurred, is called a conditional probability.the conditional probability of Event A, given Event B, is denoted by the symbolP(A|B)

A事件发生是建立在B事件发生的前提下的,则称A conditional on B ( 条件概率 )

3. the complement of an event is the event not occurring. the probability that event A will not occur is denoted byP(A')

互补,一个事件的互补等于1 减去 这个事件发生的概率.

4. the probability that events A and B both occur is the probability of theintersectionof A and B. it is denoted byP(AnB).

两个事件的交. 如果这两个事件是互斥的,那么他俩的交为0

5. the probability that events A or B occur is the probability of the union of A and B. the probability of the union of events A and B is denoted byp(AuB)

6. if the occurrence of the event A changes the probability of event B, then events A and B are Bdependent, on the other hand, if the occurrence of event A does not change the probability of event B, then events A and B areindependent.

如果事件A影响事件B那么这两个事件是 依赖的.反之是 独立的.



Rules of probability?

Rule of multiplication:    P( A n B ) = P ( A ) P ( B | A) = P ( B ) P ( A | B)

Rule of Addition:      P( A u B ) = P ( A ) + P ( B ) - P ( A n B )  

example :

A card is drawn randomly from a deck of ordinary playing cards. You win $10 if the card is a spade or an ace. What is the probability that you will win the game?

从一副扑克牌中选出一张牌, 如果这张牌 是黑桃或者是A,则胜,求胜利的概率.

定义 A 为选出的扑克牌 是黑桃. 定义 B 为选出的扑克牌是 As

P( A u B) = P ( A) + P ( B ) - P( A n B ) = 13 / 54 + 4 / 54 - 1 / 54 

贝叶斯公式.

通常, 事件A在事件B ( 发生 )的条件下的概率,与事件B在事件A( 发生 )的条件下的概率是不一样的, 但是这两者是有确定关系的, 贝叶斯定理就是对这种关系的陈述.






贝叶斯公式例题:

Marine明天就要结婚了,婚礼安排在一个沙漠的室外举行. 最近几年, 每年中仅有5 天下雨. 不幸的是, 天气预报预计明天将要下雨.    从历史资料看, 真实下雨,然后天气预报预报下雨的概率是 90%,  真实不下雨但是天气预报下雨的概率是 10%, 那么Marine 婚礼下雨的概率是多少?

解:

定义事件A1, 在婚礼下雨

       事件A2, 在婚礼不下雨

事件B, 天气预报预测下雨

p(A1) = 5/365

p(A2) = 360/365

p(B|A1) = 0.9

P(B|A2) = 0.1


最终我们需要求解 P(A1|B)    为什么 ?   因为现在我们已经知道的确定发生的是天气预报预测下雨, 所以根据条件概率 在B事件发生的情况下A1 事件发生的概率定义为 P(A1|B)

根据贝叶斯公式:  

P(A1|B) =   P(B|A1)*P(A1)  / {  P( A1 n B)  + P( A2 n B )   }


Random Variable: 一个变量的值随机的事件取得,那么这个值称为random variable

Discrete : mostly, count

continuous: mostly, a range of values. eg. the range of age.


数学期望值( 均值 ) expected value

E(X) = μx = Σ [ xi * P(xi) ]



随机变量( random variable )的独立性.

假设XY为两个随机变量,  

  • P(x|y) = P(x), for all values of X and Y.
  • P(x  y) = P(x) * P(y), for all values of X and Y 则, XY是相互独立的.

Linear Transformation: 一个变量的值得改变通过加上/减去一个常量,或者乘以/除以一个常量.

假设Y是由X线性变换产生的新变量, 则

Y = mX + b  and Var(Y) = m2 * Var(X)

where m and b are constants.



版权声明:本文为博主原创文章,未经博主允许不得转载。

概率论中基本概念回顾

概率论和统计学恰好是两个相反的概念,统计学是抽取部分样本进行统计来估算总体的情况,而概率论是通过总体情况来估计单个事件或者部分事情的发生情况。笔者回顾统计学中概率论部分的基本概念。...

概率统计相关基础知识

概率编辑[gài lǜ]  概率,又称或然率、机会率、机率或可能性,是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个...

异或、异或和 的性质与应用

异或是一种基于二进制的位运算,用符号XOR或者 ^ 表示,其运算法则是对运算符两侧数的每一个二进制位,同值取0,异值取1。它与布尔运算的区别在于,当运算符两侧均为1时,布尔运算的结果为1,异或运算的结...

统计学 入门基础概念篇 - Descriptive Statistics: Quantitative Measures(个人笔记)

Qualitative variable: qualitative variable take on values that are names or labels. The color of a ...
  • YtdxYHZ
  • YtdxYHZ
  • 2016年05月21日 03:28
  • 1355

PRML Ch2: Probability Distributions 机器学习的概率基础

PRML的第二章介绍了几种机器学习,特别是贝叶斯学派机器学习中常用的概率分布...

概率质量函数(Probability Mass Function)和期望课程笔记

随机变量的数学定义从样本空间到实数值的映射函数。一个样本空间可以定义多个随机变量一个或几个随机变量的函数构成一个新的随机变量概率质量函数的定义pX(x)=P(X=x)=P({ω∈Ω s.t.X(ω)=...

概率密度函数(probability density function)课程笔记

PDFs一个合法的PDF有2个条件: fX(x)≥0f_X(x) \ge 0 ∫∞−∞fX(x)dx=1\int_{-\infty}^{\infty}f_X(x)dx = 1 取值在一个连续的集合上,...

java基础 个人笔记 Oracle部分

  • 2012年03月13日 15:23
  • 110KB
  • 下载

白手起家学习数据科学 ——Probability之“独立事件和条件概率篇”(四)

不懂*概率*(*probability*)是很难学好数据科学,这个章节中我们会学习*概率*,掌握实际应用,去掉很多学术上的东西。 对应我们的目的,我们应该把*概率*看成定量不确定性事件,这个事件是从...

数据分析概率及统计学基础

一.数据分析概述 1. 数据分析的概念 数据分析就是分析数据,从一大堆数据中提取你想要的信息。比较专业的回答:数据分析是有针对性的收集、加工、整理数据,并采用统计、挖掘技术分析和解释数据的科学与艺术。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:统计学 入门基础概念篇 Probability 概率部分 (个人笔记)
举报原因:
原因补充:

(最多只允许输入30个字)