BZOJ 2818 GCD【欧拉函数】

原创 2016年05月30日 17:13:31

题目链接:

http://www.lydsy.com/JudgeOnline/problem.php?id=2818

题意:

给定整数N,求1<=x,y<=NGcd(x,y)为素数的数对(x,y)有多少对?

分析:

gcd(x,y)=p(p)(x,y)gcd(x/p,y/p)=1的对数。那么我们枚举一下质数,再乘上因数的欧拉函数就好了,注意答案最后要乘上2并且要加上因数为两个1的情况即质数和质数本身的情况。

代码:

/*
-- BZOJ 2818
-- Created by jiangyuzhu
-- 2016/5/29
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <stack>
#include <bitset>
using namespace std;
typedef long long ll;
#define sa(n) scanf("%d", &(n))
#define sal(n) scanf("%I64d", &(n))
#define pl(x) cout << #x << " " << x << endl
#define pr(x) cout << #x << " " << x << ' '
const int maxm = 1e7 + 5,  oo = 0x3f3f3f3f, mod = 1e9 + 7;
bool isprime[maxm];
ll phi[maxm];
int prime[maxm];
ll f[maxm];
int tot = 0;
int maxn;
void getprime()
{
    memset(isprime, true, sizeof(isprime));
    for(int i = 2; i <= maxn; i++){
        if(isprime[i]){
            prime[tot++] = i;
            for(int j = i * 2; j <= maxn; j += i) isprime[j] = false;
        }
    }
}
void euler()
{
    for(int i = 1; i <= maxn; i++) phi[i] = i;
    for(int i = 2; i <= maxn; i += 2) phi[i] /= 2;
    for(int i = 3; i <= maxn; i += 2){
        if(phi[i] == i){
            for(int j =  i; j <= maxn; j += i) phi[j] = phi[j] / i * (i - 1);
        }
    }
    f[1] = 0;
    for(int i = 2; i <= maxn; i++){
        f[i] = f[i - 1] + phi[i] * 2;
    }
}
int main (void)
{
    sa(maxn);
    getprime();
    euler();
    ll ans = 0;
    for(int i = 0; i < tot && prime[i] <= maxn; i++){
        ans += 1 + f[maxn / prime[i]];
    }
    printf("%lld", ans);
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

[BZOJ 2818] gcd · 欧拉函数

欧拉函数。 随意感受一下,大概就是要你求这个东西: 但是N    其中K是从[1,N]的素数。 再稍微观察一下就又发现,其实这个公式后面半部分就是phi(i),那么公式就进一步简化为: 求phi...

BZOJ 2818 Gcd (数论 欧拉)

【bzoj2818】Gcd2014年6月15日3,0930 Description给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对.Input一个整数NOutpu...
  • w4149
  • w4149
  • 2017-06-05 19:43
  • 58

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

BZOJ 2818 Gcd 线性欧拉

BZOJ 2818 Gcd 线性欧拉

BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

BZOJ 2818 Gcd(gcd(x,y)为素数/欧拉函数/莫比乌斯反演)

题目链接: BZOJ 2818 Gcd 题意: x∈[1,N],y∈[1,N],gcd(x,y)=素数的有序对(x,y)的对数。x\in [1,N],y\in [1, N],gcd(x,y)=素...

BZOJ 2818: Gcd

题目 2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Description 给定整数N,求1 数对(x,y)有多少...

BZOJ 2818: Gcd

题目大意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对.我会暴力!直接枚举质数,然后莫比乌斯反演求互质数对,这样做的理论复杂度是O(质数个数*根号(N/质数))...

BZOJ 2818: 欧拉筛法求gcd(x,y)==k(k为质数)

Description给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对.Input一个整数NOutput如题Sample Input4Sample Output4H...

HDU 2588 GCD(欧拉函数)

1e9,显然不能用常规做法。       思路:先找出n的约数t,则有gcd(t,n)= t 。令t >= m则满足了题意。       接下来要找出所有小于n / t且与n / t互素的数的个数...

BZOJ2818 Gcd(欧拉函数)

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题目要求的是下面这个东西↓ 其实这个东西和下面这个东西是等价的↓ 然后就是...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)