BZOJ 2818 GCD【欧拉函数】

原创 2016年05月30日 17:13:31

题目链接:

http://www.lydsy.com/JudgeOnline/problem.php?id=2818

题意:

给定整数N,求1<=x,y<=NGcd(x,y)为素数的数对(x,y)有多少对?

分析:

gcd(x,y)=p(p)(x,y)gcd(x/p,y/p)=1的对数。那么我们枚举一下质数,再乘上因数的欧拉函数就好了,注意答案最后要乘上2并且要加上因数为两个1的情况即质数和质数本身的情况。

代码:

/*
-- BZOJ 2818
-- Created by jiangyuzhu
-- 2016/5/29
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <stack>
#include <bitset>
using namespace std;
typedef long long ll;
#define sa(n) scanf("%d", &(n))
#define sal(n) scanf("%I64d", &(n))
#define pl(x) cout << #x << " " << x << endl
#define pr(x) cout << #x << " " << x << ' '
const int maxm = 1e7 + 5,  oo = 0x3f3f3f3f, mod = 1e9 + 7;
bool isprime[maxm];
ll phi[maxm];
int prime[maxm];
ll f[maxm];
int tot = 0;
int maxn;
void getprime()
{
    memset(isprime, true, sizeof(isprime));
    for(int i = 2; i <= maxn; i++){
        if(isprime[i]){
            prime[tot++] = i;
            for(int j = i * 2; j <= maxn; j += i) isprime[j] = false;
        }
    }
}
void euler()
{
    for(int i = 1; i <= maxn; i++) phi[i] = i;
    for(int i = 2; i <= maxn; i += 2) phi[i] /= 2;
    for(int i = 3; i <= maxn; i += 2){
        if(phi[i] == i){
            for(int j =  i; j <= maxn; j += i) phi[j] = phi[j] / i * (i - 1);
        }
    }
    f[1] = 0;
    for(int i = 2; i <= maxn; i++){
        f[i] = f[i - 1] + phi[i] * 2;
    }
}
int main (void)
{
    sa(maxn);
    getprime();
    euler();
    ll ans = 0;
    for(int i = 0; i < tot && prime[i] <= maxn; i++){
        ans += 1 + f[maxn / prime[i]];
    }
    printf("%lld", ans);
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
  • Tc_To_Top
  • Tc_To_Top
  • 2015年08月20日 00:40
  • 1177

hdu2588 GCD (欧拉函数)

GCD 题意:输入N,M(2=M的X的个数。  (文末有题)   知识点:   欧拉函数。http://www.cnblogs.com/shentr/p/5317442.html ...
  • strangedbly
  • strangedbly
  • 2016年03月28日 12:22
  • 1139

HDOJ GCD 2588【欧拉函数】

GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis...
  • ydd97
  • ydd97
  • 2015年08月22日 13:19
  • 1472

BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
  • Tc_To_Top
  • Tc_To_Top
  • 2015年08月20日 00:40
  • 1177

bzoj 2818 GCD(欧拉函数)

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 思路: 求1数对(x,y)有多少对. 可以写成 求1数对(x,y)有多少对. ...
  • qq_33997572
  • qq_33997572
  • 2017年10月25日 11:02
  • 80

[BZOJ 2818] gcd · 欧拉函数

欧拉函数。 随意感受一下,大概就是要你求这个东西: 但是N    其中K是从[1,N]的素数。 再稍微观察一下就又发现,其实这个公式后面半部分就是phi(i),那么公式就进一步简化为: 求phi...
  • ycdfhhc
  • ycdfhhc
  • 2015年03月11日 23:14
  • 554

BZOJ 2818: Gcd区间内最大公约数 为素数的对数(欧拉函数的应用)

传送门 2818: GcdTime Limit: 10 Sec Memory Limit: 256 MB Submit: 3649 Solved: 1605 [Submit][Status]...
  • qingshui23
  • qingshui23
  • 2016年05月31日 20:48
  • 3104

BZOJ2818:Gcd(莫比乌斯函数 & 欧拉函数)

2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 5078  Solved: 2281 [Submit][Status][Discu...
  • junior19
  • junior19
  • 2017年04月25日 14:57
  • 213

BZOJ 2818 Gcd(gcd(x,y)为素数/欧拉函数/莫比乌斯反演)

题目链接: BZOJ 2818 Gcd 题意: x∈[1,N],y∈[1,N],gcd(x,y)=素数的有序对(x,y)的对数。x\in [1,N],y\in [1, N],gcd(x,y)=素...
  • Ramay7
  • Ramay7
  • 2016年06月04日 14:55
  • 699

BZOJ 2818 Gcd (欧拉筛 \ 莫比乌斯反演)

题意:给定整数N,求1
  • wing_wuchen
  • wing_wuchen
  • 2017年08月07日 11:04
  • 89
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:BZOJ 2818 GCD【欧拉函数】
举报原因:
原因补充:

(最多只允许输入30个字)