SPOJ 7001 VLATTICE【莫比乌斯反演】

原创 2016年05月30日 17:44:25

题目链接:

http://www.spoj.com/problems/VLATTICE/

题意:

1x,y,zn,问有多少对(x,y,z)使得gcd(x,y,z)=1

分析:

欧拉搞不了了,我们用莫比乌斯来搞一搞。
同样,我们设
f(d):满足gcd(x,y,z)=dx,y,z均在给定范围内的(x,y,z)的对数。
F(d):满足d|gcd(x,y,z)x,y,z均在给定范围内的(x,y,z)的对数。
显然F(d)=[n/d][n/d][n/d],反演后我们得到

f(x)=x|dμ(d/x)[n/d][n/d][n/d]

直接求解f(1)即可。
特别注意坐标轴上的点和坐标平面上的点。

代码:

/*
-- SPOJ 7001
-- mobius
-- Create by jiangyuzhu
-- 2016/5/30
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <stack>
using namespace std;
typedef long long ll;
#define sa(n) scanf("%d", &(n))
#define sal(n) scanf("%I64d", &(n))
#define pl(x) cout << #x << " " << x << endl
#define mdzz cout<<"mdzz"<<endl;
const int maxn = 1e6 + 5 ;
int tot = 0;
int miu[maxn], prime[maxn], f[maxn];
bool flag[maxn];
void mobius()
{
    miu[1] = 1;
    tot = 0;
    for(int i = 2; i < maxn; i++){
        if(!flag[i]){
            prime[tot++] = i;
            miu[i] = -1;
        }
        for(int j = 0; j < tot && i * prime[j] < maxn; j++){
            flag[i * prime[j]] = true;
            if(i % prime[j]) miu[i * prime[j]] = -miu[i];
            else{
                miu[i * prime[j]] = 0;
                break;
            }
        }
    }
}
int main (void)
{
    mobius();
    int T;sa(T);
    int n;
    for(int kas = 1; kas <= T; kas++){
       scanf("%d", &n);
       ll ans = 3;
       for(int i = 1; i <= n; i++){
         ans += miu[i] * 1ll * (n/ i) * (n / i) * (n / i + 3);
       }
       printf("%lld\n", ans);
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

SPOJ - VLATTICE Visible Lattice Points(gcd(x,y,z)=1的对数/莫比乌斯反演)

题目链接: SPOJ - VLATTICE Visible Lattice Points 题意: 一个n*n*n的方格,从最左下角(0, 0, 0)最多可以看到多少个点?(不被遮挡)包括方格内部...
  • Ramay7
  • Ramay7
  • 2016年06月04日 13:57
  • 372

【莫比乌斯反演】[SPOJ VLATTICE]Visible Lattice Points

题目描述: Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How ma...

SPOJ 7001 Visible Lattice Points (莫比乌斯反演)

 题意:给定n*n*n的立方体,问从(0,0,0)点处能看到多少点,一个点能被看到当且仅当它与原点之间的连线上没有其他点。 思路:假设一个点(x,y,z)能被看到,那么gcd(x,y,z)一定...

[SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One ...
  • ahm001
  • ahm001
  • 2014年10月24日 09:47
  • 1187

【spoj7001】莫比乌斯反演

题目:给出n,求出有多少小于n的三元组(自然数),使得gcd(x, y, z)为0, 即从三维空间(0, 0, 0) 可以看到的点数。 莫比乌斯反演两种形式 此题用的是第二种,设f(m)为m ...

SPOJ 7001 Visible Lattice Points (数论关于gcd,超经典极力推荐-莫比乌斯反演)

传送门:http://www.spoj.com/problems/VLATTICE/ SPOJ Problem Set (classical) 7001. Visible Lattice P...

【莫比乌斯反演】[SPOJ-VLATTICE]Visible Lattice Points

题目 题目大意就是求在一个边长为N的正方体内,你站在(0,0,0)所能看到的所有点。 分析:这道题,我们可以分成三类来讨论. 第一类:坐标轴上的点 我们无论如何只能看见3个。 第二类:与原点...

POJ - 3090+SPOJ - VLATTICE (欧拉函数 莫比乌斯反演)

POJ - 3090+SPOJ - VLATTICE (欧拉函数 莫比乌斯反演) 原题:https://vjudge.net/problem/10261/origin+https://vjudge.n...

SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

spoj4491 莫比乌斯反演

  • 2015年08月22日 12:48
  • 263KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:SPOJ 7001 VLATTICE【莫比乌斯反演】
举报原因:
原因补充:

(最多只允许输入30个字)