HDU 4746 Mophues【莫比乌斯反演】

原创 2016年05月30日 21:42:16

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=4746

题意:

1x,yn , 求gcd(x,y)分解后质因数个数小于等k(x,y)的对数。

分析:

莫比乌斯反演。
还是一个套路,我们设
f(d):满足gcd(x,y)=dx,y均在给定范围内的(x,y)的对数。
F(d):满足d|gcd(x,y)x,y均在给定范围内的(x,y)的对数。
显然F(x)=[n/x][m/x],反演后我们得到

f(x)=x|dμ(d/x)[n/d][m/d]

最直接的方法,枚举质数p,那么
ans=pmin(n,m)(dmin(n/p,m/p)μ(d)[n/(pd)][m/(pd)])

这样肯定会超时。
我们令a=pd,那么
ans=a=1min(n,m)[n/a][m/a]p|aμ(a/p)

我们希望快速获得每个a对应的p|aμ(a/p),由于题目规定了最大的质因子数目,所以我们增加一维,设f[i][j]表示质因子数目小于等于j时 前i项和,根据公式计算即可。
最后我们再取个前缀和就好了。注意这里仍然使用了分段优化。

代码:

/*
-- Hdu 4746
-- Created by jiangyuzhu
-- 2016/5/30
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <stack>
using namespace std;
typedef long long ll;
#define sa(n) scanf("%d", &(n))
#define sal(n) scanf("%I64d", &(n))
#define pl(x) cout << #x << " " << x << endl
#define mdzz cout<<"mdzz"<<endl;
const int maxn = 5e5 + 5 ;
int tot = 0;
int miu[maxn], prime[maxn], f[maxn][20 + 5];
int cnt[maxn];
bool flag[maxn];
void mobius()
{
    miu[1] = 1;
    tot = 0;
    for(int i = 2; i < maxn; i++){
        if(!flag[i]){
            prime[tot++] = i;
            miu[i] = -1;
            cnt[i] = 1;
        }
        for(int j = 0; j < tot && i * prime[j] < maxn; j++){
            flag[i * prime[j]] = true;
            cnt[i * prime[j]] = cnt[i] + 1;
            if(i % prime[j]){
                miu[i * prime[j]] = -miu[i];
            }
            else{
                miu[i * prime[j]] = 0;
                break;
            }
        }
    }
    for(int i = 1; i < maxn; i++){
        for(int j = i; j < maxn; j += i){
            f[j][cnt[i]] += miu[j / i];
        }
    }
    for(int i = 1; i < maxn; i++){
        for(int j = 1; j < 20; j++){
            f[i][j] +=  f[i][j - 1] ;
        }
    }
    //前缀和
    for(int i = 1; i < maxn; i++){
        for(int j = 0; j < 20; j++){
            f[i][j] += f[i - 1][j];
        }
    }
}
int main (void)
{
    mobius();
    int T;sa(T);
    int n, m, k;
    for(int kas = 1; kas <= T; kas++){
       scanf("%d%d%d", &n, &m, &k);
       ll ans = 0;
       k = min(k, 19);
       int j;
       if(n > m) swap(n, m);
       for(int i = 1; i <= n; i = j + 1){
           j = min(n /(n / i), m / (m / i ));
          ans += (n / j) * 1ll * (m / j) * (f[j][k] - f[i - 1][k]);
       }
       printf("%lld\n", ans);
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

HDU 4746 Mophues(莫比乌斯反演)

题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数 思路:不难看出可以看出p最多不超过19. 首先考虑这个问题的简化版,求gcd(a,b)小于等于d的数对的数量。 对...

HDU4746 Mophues(莫比乌斯反演)

Mophues Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others) Total ...

hdu 4746 Mophues 莫比乌斯反演

Mophues Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others) Total ...

HDU 4746 Mophues(莫比乌斯反演)

这道题是跟着秦总博客学的:附上链接:秦总博客用f(d)f(d)表示满足d=gcd(x,y)d=gcd(x,y)且1<=x<=n,1<=y<=m1<=x<=n,1<=y<=m的对数。用F(d)F(d)表...

hdu_4746_莫比乌斯反演

下面这个题解很详细。。 http://blog.csdn.net/acdreamers/article/details/12871643

spoj4491 莫比乌斯反演

  • 2015-08-22 12:48
  • 263KB
  • 下载

莫比乌斯反演(宋新波)

  • 2016-08-03 09:05
  • 564KB
  • 下载

完全数+莫比乌斯反演hdu 1695+伪随机数 poj2183

完全数:  完全数,又称完美数或完备数,是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)之和,恰好等于它本身。 或者可以理解为,如果n是一个正整数,且所有正因子之和等于2n,那么n称为完全数...

HDU 1695 GCD 容斥原理/莫比乌斯反演

题意: 给你两个集合[a,b],[c,d],还有一个k。让你从集合[a,b]中找出x,[c,d]中找出y,问共有多少组(x,y)使得gcd(x,y)=k。 思路: 容斥。

hdu5468 Puzzled Elena(容斥 莫比乌斯反演)

hdu5468 Puzzled Elena题意求一棵子树内与它互质的点个数解法容斥我们先求出与它不互质的数的个数,再用总数减去就好。#include #include #include #inc...
  • glk__
  • glk__
  • 2016-09-01 17:59
  • 78
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)