【Codeforces 98E】Help Shrek and Donkey

本文通过一个具体的博弈游戏,分析了在信息不完全的情况下,如何计算先手玩家的获胜概率。通过对不同策略的选择和对手反应的预测,利用数学方法求解最优策略。

题目描述

A君有n张牌,B君有m张牌,桌上还有一张反扣着的牌,每张牌都不一样。

每个回合可以做两件事中的一件

  • 猜测桌上的牌是什么,猜对则胜,猜败则输。
  • 询问对方是否有某张牌,若有则需要将其示出,否则继续游戏。

A和B都很聪明,问A的胜率。

n,m<5000


分析

首先不到最后一刻是不会选择猜桌上的牌的。
假如某一次对方问了一张自己手上没有的牌,就可能会怀疑桌上的牌就是这张。
而询问对方是否有某张牌,我们可以选择询问自己手上有的牌,假如对方相信而去猜测这张牌的话就会输掉,我们称这样的行为作欺骗。
f(n,m)表示先手有n张牌,后手有m张牌,先手的获胜概率。
那么就可以列一个表格,表示先手的选择以及后手的应对。

  • 先手选择猜测对方的牌
    • 后手认为先手在猜测,先手获胜的概率是mm+1(1f(m1,n))
    • 后手认为先手在欺骗,先手获胜的概率是1m+1+mm+1(1f(m1,n))
  • 先手选择欺骗
    • 后手认为先手在猜测,先手获胜的概率是1
    • 后手认为先手在欺骗,先手获胜的概率是1f(n1,m)

那么对于先手的任意一个策略,后手会选择最优的策略去使他输。也就是说假如先手用p的概率选择去猜测,1p的概率选择去欺骗。
那么最终贡献的概率是

maxpmin{pmm+1(1f(m1,n))+(1p),pm+1+pmm+1(1f(m1,n))+(1p)(1f(n1,m))}

p视为自变量,问题就转化为两条直线取min的问题,求个交点就可以得到最大值。

时间复杂度O(nm)
空间复杂度O(nm)

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值