Linear regression with one variable

原创 2016年05月30日 23:49:18


       In this part of this exercise, you will implement linear regression with one variable to predict profits for a food truck. Suppose you are the CEO of a restaurant franchise and are considering different cities for opening a new outlet. The chain already has trucks in various cities and you have data for profits and populations from the cities.
       You would like to use this data to help you select which city to expand to next.

       The file ex1data1.txt contains the dataset for our linear regression problem. The first column is the population of a city and the second column is the profit of a food truck in that city. A negative value for profit indicates a loss.

2.Computing the cost J(θ):


<span style="font-size:14px;">function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
%   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly 
J = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
%               You should set J to the cost.
J = sum((X * theta - y).^2) / (2*m);     % X(79,2)  theta(2,1)</span>

3.Gradient Descent&Update Equations


<span style="font-size:14px;">function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
%   theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by 
%   taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    %               theta. 
    % Hint: While debugging, it can be useful to print out the values
    %       of the cost function (computeCost) and gradient here.
    theta(1) = theta(1) - alpha / m * sum(X * theta_s - y);       
    theta(2) = theta(2) - alpha / m * sum((X * theta_s - y) .* X(:,2));   
    % ============================================================
    % Save the cost J in every iteration    
    J_history(iter) = computeCost(X, y, theta);





Linear regression with one variable

  • 2016年05月30日 23:54
  • 369KB
  • 下载

Andrew Ng机器学习-Linear Regression with one variable

这一讲主要是针对单变量的线性回归来讲两个基本概念:损失函数(cost function)、梯度下降(Gradient Descent)1 Cost Function 定义如下: 左图为cost...

Stanford机器学习 -- Linear Regression with one variable

Stanford机器学习 – Linear Regression with one variable

Stanford机器学习---第一讲. Linear Regression with one variable

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学...

机器学习-Linear Regression with One Variable

Model, Cost Function And Gradient Descent

Machine Learning week 1 quiz: Linear Regression with One Variable

Linear Regression with One Variable 5 试题 1.  Consider the problem of predicting how wel...

Stanford机器学习---第一讲. Linear Regression with one variable(补充版)

摘自  本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization...
  • Leytton
  • Leytton
  • 2014年08月15日 01:07
  • 811

斯坦福大学ML(2)单变量线性回归(Linear Regression with One Variable)

2-1 (model representation)模型代表        (Our first learning algorithm will be linear regression.)我们第一个...

【Stanford机器学习笔记】1-Linear Regression with One Variable

【Stanford机器学习笔记】1-Linear Regression with One Variable

Machine Learning - Linear Regression with One Variable

This article contains learning model representation, cost function and Gradient Descent algorithm to...
  • iracer
  • iracer
  • 2016年02月13日 17:22
  • 989
您举报文章:Linear regression with one variable