LDA-math-认识Beta/Dirichlet分布(1)

转载 2013年12月01日 19:56:17

文章转自http://www.52nlp.cn/lda-math-%E8%AE%A4%E8%AF%86betadirichlet%E5%88%86%E5%B8%831

mark 一下

2. 认识Beta/Dirichlet分布
2.1 魔鬼的游戏—认识Beta 分布

统计学就是猜测上帝的游戏,当然我们不总是有机会猜测上帝,运气不好的时候就得揣度魔鬼的心思。有一天你被魔鬼撒旦抓走了,撒旦说:”你们人类很聪明,而我是很仁慈的,和你玩一个游戏,赢了就可以走,否则把灵魂出卖给我。游戏的规则很简单,我有一个魔盒,上面有一个按钮,你每按一下按钮,就均匀的输出一个[0,1]之间的随机数,我现在按10下,我手上有10个数,你猜第7大的数是什么,偏离不超过0.01就算对。“ 你应该怎么猜呢?

从数学的角度抽象一下,上面这个游戏其实是在说随机变量X1,X2,,XniidUniform(0,1),把这n 个随机变量排序后得到顺序统计量 X(1),X(2),X(n), 然后问 X(k) 的分布是什么。

对于不喜欢数学的同学而言,估计每个概率分布都是一个恶魔,那在概率统计学中,均匀分布应该算得上是潘多拉魔盒,几乎所有重要的概率分布都可以从均匀分布Uniform(0,1)中生成出来;尤其是在统计模拟中,所有统计分布的随机样本都是通过均匀分布产生的。

pandora潘多拉魔盒Uniform(0,1)


对于上面的游戏而言 n=10,k=7, 如果我们能求出 X(7) 的分布的概率密度,那么用概率密度的极值点去做猜测就是最好的策略。对于一般的情形,X(k) 的分布是什么呢?那我们尝试计算一下X(k) 落在一个区间 [x,x+Δx] 的概率,也就是求如下概率值

P(xX(k)x+Δx)=?

把 [0,1] 区间分成三段 [0,x),[x,x+Δx],(x+Δx,1],我们先考虑简单的情形,假设n 个数中只有一个落在了区间 [x,x+Δx]内,则因为这个区间内的数X(k)是第k大的,则[0,x)中应该有 k1 个数,(x,1] 这个区间中应该有nk 个数。不失一般性,我们先考虑如下一个符合上述要求的事件E

E={X1[x,x+Δx],Xi[0,x)(i=2,,k),Xj(x+Δx,1](j=k+1,,n)}

beta-game-1事件 E

则有

P(E)=i=1nP(Xi)=xk1(1xΔx)nkΔx=xk1(1x)nkΔx+o(Δx)

o(Δx)表示Δx的高阶无穷小。显然,由于不同的排列组合,即n个数中有一个落在 [x,x+Δx]区间的有n种取法,余下n1个数中有k1个落在[0,x)的有(n1k1)种组合,所以和事件E等价的事件一共有 n(n1k1)个。继续考虑稍微复杂一点情形,假设n 个数中有两个数落在了区间 [x,x+Δx]

E={X1,X2[x,x+Δx],Xi[0,x)(i=3,,k),Xj(x+Δx,1](j=k+1,,n)}

beta-game-2事件E’

则有

P(E)=xk2(1xΔx)nk(Δx)2=o(Δx)

从以上分析我们很容易看出,只要落在[x,x+Δx]内的数字超过一个,则对应的事件的概率就是 o(Δx)。于是
P(xX(k)x+Δx)=n(n1k1)P(E)+o(Δx)=n(n1k1)xk1(1x)nkΔx+o(Δx)

所以,可以得到X(k)的概率密度函数为
f(x)=limΔx0P(xX(k)x+Δx)Δx=n(n1k1)xk1(1x)nk=n!(k1)!(nk)!xk1(1x)nkx[0,1]

利用Gamma 函数,我们可以把 f(x) 表达为
f(x)=Γ(n+1)Γ(k)Γ(nk+1)xk1(1x)nk

还记得神奇的 Gamma 函数可以把很多数学概念从整数集合延拓到实数集合吧。我们在上式中取α=k,β=nk+1, 于是我们得到

f(x)=Γ(α+β)Γ(α)Γ(β)xα1(1x)β1

这个就是一般意义上的 Beta 分布!可以证明,在α,β取非负实数的时候,这个概率密度函数也都是良定义的。

好,我们回到魔鬼的游戏,这n=10,k=7这个具体的实例中,我们按照如下密度分布的峰值去猜测才是最有把握的。

f(x)=10!(6)!(3)!x6(1x)3x[0,1]

然而即便如此,我们能做到一次猜中的概率也不高,很不幸,你第一次没有猜中,魔鬼微笑着说:“我再仁慈一点,再给你一个机会,你按5下这个机器,你就得到了5个[0,1]之间的随机数,然后我可以告诉你这5个数中的每一个,和我的第7大的数相比,谁大谁小,然后你继续猜我手头的第7大的数是多少。”这时候我们应该怎么猜测呢?

相关文章推荐

LDA-math-认识Beta/Dirichlet分布

2. 认识Beta/Dirichlet分布 2.1 魔鬼的游戏—认识Beta 分布 统计学就是猜测上帝的游戏,当然我们不总是有机会猜测上帝,运气不好的时候就得揣度魔鬼的心思。有一天你被魔鬼撒旦抓走...

【转载】 Beta分布和Dirichlet分布

本文转载至:http://maider.blog.sohu.com/306392863.html 如何理解Beta分布和Dirichlet分布?   ...

beta分布 and Dirichlet分布

背景 在Machine Learning中,有一个很常见的概率分布叫做Beta Distribution: 同时,你可能也见过Dirichelet Distribution: 那么Beta ...

机器学习的数学基础(1)--Dirichlet分布

这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结。 基础知识:conjugate priors共轭先验     共轭先验是指这样一种概率密度:它使得后验概率的密度...

从二项式分布到多项式分布-从Beta分布到Dirichlet分布

转自: http://hi.baidu.com/leifenglian/item/636198016851cee7f55ba652 从二项式分布到多项式分布-从Beta分布到Dirichlet...

伯努利分布、二项分布、多项分布、Beta分布、Dirichlet分布

1. 伯努利分布 伯努利分布(Bernoulli distribution)又名两点分布或0-1分布,介绍伯努利分布前首先需要引入伯努利试验(Bernoulli trial)。 伯努利试验...

从二项式分布到多项式分布-从Beta分布到Dirichlet分布(讲的实在太好了)

原文转自:http://hi.baidu.com/leifenglian/item/636198016851cee7f55ba652 一、前言 参数估计是一个重要的话题。对于典...

关于Beta分布、二项分布与Dirichlet分布、多项分布的关系

from:http://blog.csdn.net/u010140338/article/details/41344853 From : http://www.cnblogs.com/w...

机器学习的数学基础(1)--Dirichlet分布

基础知识:conjugate priors共轭先验     共轭先验是指这样一种概率密度:它使得后验概率的密度函数与先验概率的密度函数具有相同的函数形式。它极大地简化了贝叶斯分析。    ...

概率分布之Beta分布与Dirichlet分布

Beta分布与Dirichlet分布的定义域均为[0,1],在实际使用中,通常将两者作为概率的分布,Beta分布描述的是单变量分布,Dirichlet分布描述的是多变量分布,因此,Beta分布可作为二...
  • jteng
  • jteng
  • 2017年03月04日 21:53
  • 1139
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:LDA-math-认识Beta/Dirichlet分布(1)
举报原因:
原因补充:

(最多只允许输入30个字)