机器学习 - MLE、MAP、BP

原创 2017年01月03日 20:45:37

本文主要介绍的三类参数估计方法-最大似然估计MLE、最大后验概率估计MAP及贝叶斯估计。

首先说下我对MLE、MAP、BP的认识:


X表示给定的数据,theta表示待求的模型参数

首先说下上面四个概率的含义:

P(theta|X)—后验概率,这个后验概率指的是参数theta的后验概率,如果是分类问题,theta就是类别;如果是回归问题,theta就是权向量。

P(X)—全概率,其实是个归一化因子。这个不重要。

P(X|theta)—参数theta的先验概率。

P(X|theta)—条件概率,在MLE中叫似然

MLE:

MLE和MAP都是在最大化参数theta的后验概率。MLE简单粗暴,直接抛开了P(X)与P(theta),直接最大化P(X|theta)。为什么要这么做呢?首先P(X)自不必说,对所有参数或者分类都是一样的;对于P(theta),MLE认为这个值可以直接从数据中获取。比如给定的分类问题,每个数据都有label,只需要统计每个label下面数据的个数。然后算出每个theta的概率即可。然后上面我们也把P(X|theta)叫做似然,因此对其进行极大似然估计,算出theta即可。

MAP:

对于上述的MLE不知道我们有没有想过这样一个问题,假如数据不具有代表性怎么办?比如我们要估计抛硬币正面朝上的概率,现在随机扔了10次,结果发现10次全朝上,那么按照MLE的办法,P(theta)=1.但事实上,我们知道P(theta)=0.5,那么最后计算出来的后验概率的估计值将产生很大偏移???

因此MAP直接研究分子P(X|theta)P(theta),就避开了MLE的这个缺口。而这个参数先验P(theta)将使得我们的最终结果更加准确。具体说明见下。

BE:

贝叶斯估计实际上可以看做是一个生成式模型,MLE与MAP都是判别式模型。不同之处就在于上面MLE与MAP是直接在使后验概率最大,就是直接在求P(theta|X),在求的过程中得出了theta。但是这个概率的分布呢?我们不知道,因此BE就干了这个事儿——BE直接求P(theta|X)的概率分布。

1、最大似然估计MLE

首先回顾一下贝叶斯公式




这个公式也称为逆概率公式,可以将后验概率转化为基于似然函数和先验概率的计算表达式,即




最大似然估计就是要用似然函数取到最大值时的参数值作为估计值,似然函数可以写做



由于有连乘运算,通常对似然函数取对数计算简便,即对数似然函数。最大似然估计问题可以写成




这是一个关于的函数,求解这个优化问题通常对求导,得到导数为0的极值点。该函数取得最大值是对应的的取值就是我们估计的模型参数。

以扔硬币的伯努利实验为例子,N次实验的结果服从二项分布,参数为P,即每次实验事件发生的概率,不妨设为是得到正面的概率。为了估计P,采用最大似然估计,似然函数可以写作



其中表示实验结果为i的次数。下面求似然函数的极值点,有




得到参数p的最大似然估计值为




可以看出二项分布中每次事件发的概率p就等于做N次独立重复随机试验中事件发生的概率。

如果我们做20次实验,出现正面12次,反面8次

那么根据最大似然估计得到参数值p为12/20 = 0.6。


2、最大后验估计MAP

最大后验估计与最大似然估计相似,不同点在于估计的函数中允许加入一个先验,也就是说此时不是要求似然函数最大,而是要求由贝叶斯公式计算出的整个后验概率最大,即




注意这里P(X)与参数无关,因此等价于要使分子最大。与最大似然估计相比,现在需要多加上一个先验分布概率的对数。在实际应用中,这个先验可以用来描述人们已经知道或者接受的普遍规律。例如在扔硬币的试验中,每次抛出正面发生的概率应该服从一个概率分布,这个概率在0.5处取得最大值,这个分布就是先验分布。先验分布的参数我们称为超参数(hyperparameter)即




同样的道理,当上述后验概率取得最大值时,我们就得到根据MAP估计出的参数值。给定观测到的样本数据,一个新的值发生的概率是



下面我们仍然以扔硬币的例子来说明,我们期望先验概率分布在0.5处取得最大值,我们可以选用Beta分布即




其中Beta函数展开是




当x为正整数时


\Gamma(n) = (n-1)!\,


Beta分布的随机变量范围是[0,1],所以可以生成normalised probability values。下图给出了不同参数情况下的Beta分布的概率密度函数


我们取,这样先验分布在0.5处取得最大值,现在我们来求解MAP估计函数的极值点,同样对p求导数我们有




得到参数p的的最大后验估计值为




和最大似然估计的结果对比可以发现结果中多了这样的pseudo-counts,这就是先验在起作用。并且超参数越大,为了改变先验分布传递的belief所需要的观察值就越多,此时对应的Beta函数越聚集,紧缩在其最大值两侧。

如果我们做20次实验,出现正面12次,反面8次,那么

那么根据MAP估计出来的参数p为16/28 = 0.571,小于最大似然估计得到的值0.6,这也显示了“硬币一般是两面均匀的”这一先验对参数估计的影响。


3 贝叶斯估计

贝叶斯估计是在MAP上做进一步拓展,此时不直接估计参数的值,而是允许参数服从一定概率分布。回顾一下贝叶斯公式




现在不是要求后验概率最大,这样就需要求,即观察到的evidence的概率,由全概率公式展开可得




当新的数据被观察到时,后验概率可以自动随之调整。但是通常这个全概率的求法是贝叶斯估计比较有技巧性的地方。

那么如何用贝叶斯估计来做预测呢?如果我们想求一个新值的概率,可以由




来计算。注意此时第二项因子在上的积分不再等于1,这就是和MLE及MAP很大的不同点。

我们仍然以扔硬币的伯努利实验为例来说明。和MAP中一样,我们假设先验分布为Beta分布,但是构造贝叶斯估计时,不是要求用后验最大时的参数来近似作为参数值,而是求满足Beta分布的参数p的期望,有




注意这里用到了公式




当T为二维的情形可以对Beta分布来应用;T为多维的情形可以对狄利克雷分布应用

根据结果可以知道,根据贝叶斯估计,参数p服从一个新的Beta分布。回忆一下,我们为p选取的先验分布是Beta分布,然后以p为参数的二项分布用贝叶斯估计得到的后验概率仍然服从Beta分布,由此我们说二项分布和Beta分布是共轭分布。在概率语言模型中,通常选取共轭分布作为先验,可以带来计算上的方便性。最典型的就是LDA中每个文档中词的Topic分布服从Multinomial分布,其先验选取共轭分布即Dirichlet分布;每个Topic下词的分布服从Multinomial分布,其先验也同样选取共轭分布即Dirichlet分布。

根据Beta分布的期望和方差计算公式,我们有




可以看出此时估计的p的期望和MLE ,MAP中得到的估计值都不同,此时如果仍然是做20次实验,12次正面,8次反面,那么我们根据贝叶斯估计得到的p满足参数为12+5和8+5的Beta分布,其均值和方差分别是17/30=0.567, 17*13/(31*30^2)=0.0079。可以看到此时求出的p的期望比MLE和MAP得到的估计值都小,更加接近0.5。

综上所述我们可以可视化MLE,MAP和贝叶斯估计对参数的估计结果如下

个人理解是,从MLE到MAP再到贝叶斯估计,对参数的表示越来越精确,得到的参数估计结果也越来越接近0.5这个先验概率,越来越能够反映基于样本的真实参数情况。


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用

最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”。 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道...

信息检索的评价指标(Precision, Recall, F-score, MAP)

之前写过一篇blog叫做机器学习实战笔记之非均衡分类问题:http://blog.csdn.net/lu597203933/article/details/38666699其中对Precision和R...

Faster-RCNN训练自己的数据集

就目前我在了解到的资料来看,训练RCNN系列,一般有两种思路: 修改CNN的工程代码,适应自己的数据集格式 将自己的数据格式做成VOC2007形式的数据集 从工作量来看,无疑后者更容易一些,本文的思路...

将数据集做成VOC2007格式用于Faster-RCNN训练

0.文件夹名 首先,确定你的数据集所放的文件夹名字,例如我的叫logos。(因为后面做xml会用到这个文件夹名字) 1.图片命名 虽然说图片名对训练没什么影响,但建议还是按VOC2007那样,如“00...

Faster-RCNN+ZF用自己的数据集训练模型(Python版本)

说明:本博文假设你已经做好了自己的数据集,该数据集格式和VOC2007相同。下面是训练前的一些修改。 (做数据集的过程可以看这里) Faster-RCNN源码下载地址: Matlab版本:http...

【目标检测】Fast RCNN算法详解

继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。

数据科学----知识树(机器学习、数据挖掘学习思维导图)

数据科学—-知识树(点击进入原图)关键词:机器学习,数据挖掘,算法理论机器学习,数据挖掘学习思维导图该知识树对数据处理的一些算法以及涉及到的学科内容做了一个大致的结构框架,便于对数据科学有一个清晰的认...

eclipse中添加jdk源码后无法查看的解决办法

将jre的路径修改为jdk目录下的路径,然后确定即可(当然了你首先要将jdk目录下的src.zip源码压缩文件添加到eclipse中)。

机器学习->统计学基础->贝叶斯估计,最大似然估计(MLE),最大后验估计(MAP)

在学习机器学习,推荐系统等上的众多算法思想时,以及在数学公式推到上面,避免不了许多统计学方面的知识,其中以贝叶斯,最大似然估计,最大后验估计为最常遇见,必须深刻掌握了解。首先讲讲贝叶斯估计(对比传统频...

[(机器学习)概率统计]极大似然估计MLE原理+python实现

在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)