关闭

扩展欧几里德算法

1139人阅读 评论(0) 收藏 举报

计算d=gcd(a,b)=ax+by的x,y:

若b==0,则gcd(a,b)=a,有x=1,y=0满足算式.
若b!=0,设已得d'=gcd(b,a%b),并有x',y'满足d'=bx'+(a%b)y'.
又有d=gcd(a,b)=d'=gcd(b,a%b).
故d=d'=bx'+(a%b)y'=bx'+(a-[a/b]*b)y'=ay'+b(x'-[a/b]y').
则x=y',y=x'-[a/b]y'就可满足d=ax+by的条件了.

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:25285次
    • 积分:306
    • 等级:
    • 排名:千里之外
    • 原创:1篇
    • 转载:16篇
    • 译文:0篇
    • 评论:0条