【Bzoj3196】2B平衡树

题意

您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:
1.查询k在区间内的排名
2.查询区间内排名为k的值
3.修改某一位值上的数值
4.查询k在区间内的前驱(前驱定义为小于x,且最大的数)
5.查询k在区间内的后继(后继定义为大于x,且最小的数)


解析

唔…看到这个标题
啊啊啊是你吗2B小姐姐!!
好了不发神经

这是个灰常普通的树套树模板,一般会用线段树套平衡树。
注意线段树的每个结点套平衡树,不是说把a1,a2,an看作平衡树塞进去,而是说线段树的1结点[1,n]上有一个平衡树,2结点[1,n/2],3结点[n/2+1,n]…上都是一个平衡树。打多了就会了吧。

这里推荐套Treap或者替罪羊吧会快一点,
打得熟练的话用树状数组代替线段树,常数小很多还省空间。

嗯树套树的话有几个重点问题吧。
首先先不急着动,先看清题意大概定好自己用什么树套什么树。
尽量选自己打得熟练的,不然到时候打起来还要一边打一边调很麻烦。
然后就是空间的计算,这也是树套树的重点吧,尽量多分析,像这道题的话,线段树开4n,我们发现每次操作影响线段树的logn个结点,m个操作,那么平衡树也就只需要开到mlogn略大就可以了。(空间这个是重点)
还有最好把一种树的操作打在一起,方便调试。
之后就是优化的问题,考虑用树状数组之类的各种技巧。

回到这道题,几个操作应该都比较模板,2操作的话是要考虑一个二分,每次查询完答案尽量往大的走。找到满足的最大数即是答案,证明的话应该也比较显然。前驱后继在每一层查,然后取最大/最小值。


放一个一点也不好看的代码,跑得也慢。
树状数组的有空再打(估计它不会诞生了)

#include <cstring> 
#include <cstdio>
#include <algorithm>

#define Rep( i , _begin , _end ) for(int i=(_begin),i##_END=(_end);i<=(i##_END);i++)
#define For( i , _begin , _end ) for(int i=(_begin),i##_END=(_end);i!=(i##_END);i++)
#define Lop( i , _begin , _end ) for(int i=(_begin),i##_END=(_end);i>=(i##_END);i--)
#define Dnt( i , _begin , _end ) for(int i=(_begin),i##_END=(_end);i!=(i##_END);i--)

using std :: max;
using std :: min;

const int maxx = 50000 + 25;
const int maxm = 50000 * 2 * 16 + 25;
const int Inf = (unsigned)(-1) >> 1;

int n,m,x,y,z,f,num,tot,ans;

int rt[maxx<<2],a[maxx];
int ch[maxm][2],v[maxm],fix[maxm],size[maxm],cnt[maxm];

namespace Treap{

    
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值