关闭

毕业设计记录

142人阅读 评论(0) 收藏 举报

深度学习预备知识:

第一部分:基础数学课
高等数学 —— 起码知道偏微分及其性质、梯度的概念,也就是同济高数一+高数二的前几章
线性代数 —— 矩阵四则/微分运算,线性空间、线性变换、特征值特征向量
概率论 —— 概率、条件概率、贝叶斯公式、概率分布
最优化问题 —— 主要是梯度下降法
第二部分:机器学习
机器学习的基本目标和概念 —— 机器学习能解决什么问题、不能解决什么问题、如何解决这些问题
神经网络 —— 神经元模型、激活函数、反向传播算法

第三部分:图像处理

图像处理的基本方法 —— 滤波、二维卷积、二维正交变换、基本形态学运算(开/闭运算,膨胀/腐蚀)

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1099次
    • 积分:60
    • 等级:
    • 排名:千里之外
    • 原创:2篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档