[组合数]UVALive7040

知识点:

组合数学-容斥原理,快速幂,逆元。

题目大意:

共有种颜色,为n盆排成一直线的花涂色。要求相邻花的颜色不相同,且使用的颜色恰好是k种。问一共有几种涂色方案(结果除10e9+7取余数)。


解题思路:

首先可以将与后面的讨论分离。从种颜色中取出种颜色涂色,取色部分有C(m, k) 种情况;

然后通过尝试可以发现,第一个有k种选择,第二个因不能与第一个相同,只有(k-1) 种选择,第三个也只需与第二个不同,也有(k-1) 种选择。总的情况数为k ×(k-1)^(n-1)。但这仅保证了相邻颜色不同,总颜色数不超过k种,并没有保证恰好出现k种颜色;

接着就是一个容斥问题,上述计算方法中包含了只含有23、…、(k-1)种颜色的情况,需要通过容斥原理去除。假设出现p (2 <= p <= k-1)种颜色,从k种颜色中选取p种进行涂色,方案数为C(k,p) × p × (p-1)^(n-1) 

综上,最后的总方案数为C(m,k) × ( k × (k-1)^(n-1) + ((-1)^p × C(k, p) × p × (p-1)^(n-1) ) (2 <= p <= k-1)

最后,需要注意1 ≤ n, m ≤10^9,在进行指数运算时,需要使用快速幂。对于组合数,只需要计算C(m,k)C(k,p) (1 <= p <= k),可以采用递推法,即C[x,i] = C[x, i-1] * (n-i+1) / i,因为要取模,所以需要用到i的逆元。


网上的一个解题报告,好不容易理解了,是超时的。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MOD = 1e9+7;
const int MAXN = 1e6 + 10;
int nCase,cCase;
ll n,m,k,ans1,ans2,C[MAXN];
inline ll pow_mod(ll p,ll k)
{
    ll ans=1;
    while(k){
        if(k&1) ans=(ans*p)%MOD;
        p=(p*p)%MOD;
        k>>=1;
    }
    return ans;
}
inline ll inverse(ll num){
    return pow_mod(num,MOD-2);
}
void calcC(ll n){
    C[0]=1;
    for(int i=1;i<=k;i++){
        C[i]=((C[i-1]*(n-i+1))%MOD)*inverse(i)%MOD;
    }
}
void solve()
{
    calcC(m);
    ans1=C[k];

    calcC(k);
    ans2=0;
    int sgn=1;
    for(int l=k;l>=2;l--){
        ans2=(ans2+(sgn*l*pow_mod(l-1,n-1))%MOD*C[l]%MOD + MOD)%MOD;
        sgn=-sgn;
    }
    printf("Case #%d: %lld\n",++nCase,ans1*ans2%MOD);
}
int main()
{
    int t,nCase=0;scanf("%d",&t);
    while(t--){
        scanf("%lld%lld%lld",&n,&m,&k);
        solve();
    }
    return 0;
}
应该是在求你逆元的地方超了时

另一种求逆元AC

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10;
LL inv[MAXN];
void inverse(){
    inv[1]=1;
    for(int i=2;i<MAXN;i++){
        inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
    }
}
LL Cm[MAXN],Ck[MAXN];
LL _pow(LL a,int n){
    if(n==0) return 1;
    LL sum=_pow(a,n/2);
    sum=sum*sum%MOD;
    if(n&1) sum=sum*a%MOD;
    return sum;
}
int n,m,k;
void get_C(){
    Ck[0]=Cm[0]=1;
        for(int i=1;i<=k;i++){
            Cm[i]=Cm[i-1]%MOD*(m-i+1)%MOD*inv[i]%MOD;
            Ck[i]=Ck[i-1]%MOD*(k-i+1)%MOD*inv[i]%MOD;
        }
}
int main()
{
    int t,kase=0;scanf("%d",&t);
    inverse();
    while(t--){
        scanf("%d%d%d",&n,&m,&k);
        int sgn=1;
        LL sum=0;
        get_C();
        for(int i=k;i>=1;i--){
            sum=(sum+Ck[i]*i%MOD*_pow(i-1,n-1)*sgn%MOD+MOD)%MOD;
            sgn=-sgn;
        }
        sum=(sum*Cm[k])%MOD;
        printf("Case #%d: %lld\n",++kase,sum);
    }
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值